Yaroslavsky Residence

CALCULATION PACKAGE COVER SHEET

Project Name: Yaroslavsky Residence
Project Number: 8119
Engineer of Record: Dustin Willms, P.E.
Project Architect: Andres Villaveces, Metrica LLC
Site Address: 9319 SE 43 ${ }^{\text {rd }}$ St. Mercer Island, WA 98040
Submission: Building Permit
Date: 05 March 2021

(Affix Engineer of Record Professional Seal Here)

Fast + Epp

PROJECT NAME: Yaroslavsky Residence
PROJECT NUMBER: 8119
DATE: 05 March 2021
DESIGN: BW, DW

INDEX OF CALCULATIONS

1. General
1.1. Project Description
1.2. Dead Loads
1.3. Live Loads
1.4. Snow Loads
1.5. Wind Loads
1.6. Seismic Loads
2. Gravity Design
2.1. Wood Framing Design
2.2. Steel Framing Design
3. Lateral Design
3.1. Shear Wall Design
3.2. Steel Moment Frame Design
3.3. Diaphragm Design
3.4. Connector Design
4. Foundation Design
4.1. Footing and Foundation Wall Design

1.1 Project Description

- New custom home on Mercer Island, WA
- 2×6 exterior and 2×4 interior wood frame walls
- TJI/LVL joist floors with plywood sheathing
- Lateral - plywood sheathed wood shear walls and steel ordinary moment frame
- Foundation - concrete spread footings
- Primary codes (see general notes for full list):
- SBC 2018
- IBC 2018
- ASCE 7-16

Fast + Epp

PROJECT:	Yaroslavsky Residence	PROJECT NUMBER: 8119
SUBJECT:	Gravity Loading	DATE:
DESIGN BY.	BJW	

DESIGN BY: BJW

NOTES:

			INPUT
RESULT			
1.2 - DEAD LOAD (PSF)			
LOWER LEVEL	49	EXTERIOR DECKS	30
5" Concrete Slab On Grade	49	Floor - allow for heavy build-up	22
		Waterproofing \& insulation	3
MAIN/UPPER LEVEL	$\mathbf{3 0}$	Plywood \& I-Joists	5
Hardwood finish flooring	1.95		
Floor topping (3/4" underlayment)	7.5		
Floor mat (1/8" sound attenuation)	0.1	ROoF	15
Subflooring (23/32" plywood)	2	Roofing	2
Structural members (11-7/8" I-Joists @ 12" O.C.)	3	Plywood \& I-Joists	5
Insulation (3-1/2" unfaced glass fiber)	1.75	Mechanical	3
Resilient channels (25 ga. @ 16" O.C.)	0.1	Finishes	5
Ceiling (2 layers of 5/8" gypsum board)	3.6		
Partitions (blanket)	10		

1.3-LIVE LOAD (PSF) [ASCE 7-16 Table 4.3-1]

RESIDENTIAL (TYP.) 40
EXTERIOR DECKS 60
ROOF LIVE LOAD20

1.4 - SNOW LOAD (PSF) [2018 IRC Table R301.2(1) w/ Mercer Island Amendments]

SNOW LOAD 30
FLAT ROOF SNOW LOAD 25
RAIN ON SNOW LOAD 5

1.5 | WIND LOADS

Search Information

Address:	9319 SE 43rd St, Mercer Island, WA 98040, USA
Coordinates:	$47.5693472,-122.2142869$
Elevation:	341 ft
Timestamp:	$2020-10-30$ T18:33:30.626Z
Hazard Type:	Wind

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	67 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph		
MRI 50-Year	78 mph	MRI 50-Year	85 mph		
MRI 100-Year	83 mph	MRI 100-Year	91 mph		
Risk Category 1	92 mph	Risk Category 1	100 mph		
Risk Category II	98 mph	Risk Category II	110 mph		
Risk Category III	105 mph	Risk Category III-IV	115 mph		
Risk Category IV	108 mph				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imnlv annroval bv the anvernina buildina code bodies resnonsible for buildina code annroval and internretation for the

PROJECT:	Yaroslavsky Residence	PROJECT NUMBER:	$\mathbf{8 1 1 9}$
SUBJECT:	MWFRS Total Building Wind Load	DATE:	2021-03-02
DESIGN BY:	BJW		

NOTES: X-DIRECTION

ASCE 7-16- WIND LOADS (ALL HEIGHTS)

Exposure Category
Basic Wind Speed
Directionality Factor
Topographic Effects*
Gust Effect Factor
Enclosure Type Importance Factor
Mean Building Height
Width Parallel to Wind
Width Normal to Wind

V_ult=	B	ec. 26.7.3	
	98	mph	PRINT WINDSPEED FROM ONLINE DATABASE TO CALC FOLDER
$\mathrm{K}_{\mathrm{d}}=$	0.85	Table 26.6-1	
$\mathrm{K}_{2 \mathrm{t}}=$	$1.9<$	Fig. 26.8-1 CONSERVATIVE, PER Sec. 26.1 I RECOMMENDATION DURING Sec. 26.12 PRE-APPLICATION MEETING	
$\mathrm{G}_{\text {used }}=$	0.85		
	Enclosed		
Iw =	1	Table 1.5-1	
$\mathrm{H}=$	32.00	ft	
$\mathrm{L}=$	64.58	ft	
$B=$	55.33	ft	
L/B_X =	1.17		
L/B_Y =	1.17		

$\mathrm{Kz}=0.71$ (calculated, see table 27.3-1)
PRESSURE AT MEAN ROOF
$\mathrm{q}_{\mathrm{h}}=\mathbf{2 8 . 3 4}$ psf-ULTIMATE

$\mathrm{GC}_{\mathrm{pi}}$	0.18
$\mathrm{Cp}-\mathrm{WW}$	0.8
$\mathrm{Cp}-\mathrm{LW}$	-0.46
Worst Case	
	-0.48

Description	Floor	Story H	H	K_{z}	$\mathrm{q}_{\mathbf{z} \text { (psf) }}$	ULTIMATE P net (psf)	Story Wind Force, Fx kips	Story Shear kips
Basement	1	0	0.00	0.57	22.8	26.6	7.5	47.0
Ground	2	10.23	10.23	0.57	22.8	26.6	15.1	39.4
Level 01	3	10.23	20.46	0.63	24.9	28.0	15.9	24.4
High Roof	4	10.23	30.69	0.71	28.0	30.1	8.5	8.5

Sec. 26.12	$\mathbf{4}$	Enclosure	
21	Select	N/A	
2	Open	0	
3	Partially	0.55	
4	Enclosed	0.18	

L/B

Surface $1.2 \quad$ Cp

Fig 27.3-1 | Windward Wall | | 0.8 |
| :--- | :---: | :---: |
| qz | | |
| Leeward Wall | -0.46 | |
| qh | | |
| L/B 0-1 | 1 | -0.5 |
| L/B 2 | 2 | -0.3 |
| L/B >= 4 | 4 | -0.2 |
| Side Wall | | |

Sec.26.7.3 | $\mathbf{2}$ | Exp Cat |
| :---: | :--- |
| 1 | A |
| 2 | B |
| 3 | C |
| 4 | D |

L/B
Surface 1.17

Cp		
Windward Wall	0.8	qz
Leeward Wall	-0.48	
qh		
L/B 0-1	1	-0.5
L/B 2	2	-0.3
L/B >= 4	4	-0.2
Side Wall		-0.7

Table Calculate Kz

26.9-1	a	$\mathrm{z}_{\mathrm{g}}(\mathrm{ft})$	a	b	a-bar	b-bar	C	\|	pislon b	$\mathrm{z}_{\text {min }}(\mathrm{ft})$
Exp A	5	1500	0.2	0.64	0.33333	0.3	0.45	180	0.5	60
Exp B	7	1200	0.1429	0.84	0.25	0.45	0.3	320	0.333	30
$\operatorname{Exp} C$	9.5	900	0.1053	1	0.15385	0.65	0.2	500	0.2	15
Exp D	11.5	700	0.087	1.07	0.11111	0.8	0.15	600	0.125	7
calc->	7	1200	0.1429	0.84	0.25	0.45	0.3	320	0.333	30

Fig. 27.3-8 CASE 1, All Heights

	Kz	qz	Wward	Lward	Swall	Net	Wward	Lward	Swall	Net	Governs
H	Use	(psf)	Gcpi (+)			Pos	Gcpi (-)			Neg	
0	0.57	22.82	10.42	-16.18	-21.96	26.60	20.62	-5.98	-11.76	26.60	26.60
10.229	0.57	22.82	10.42	-16.18	-21.96	26.60	20.62	-5.98	-11.76	26.60	26.60
20.458	0.63	24.94	11.86	-16.18	-21.96	28.04	22.06	-5.98	-11.76	28.04	28.04
30.688	0.71	28.00	13.94	-16.18	-21.96	30.12	24.14	-5.98	-11.76	30.12	30.12

PROJECT: Yaroslavsky Residence
PROJECT NUMBER:
SUBJECT: MWFRS Total Building Wind Load
DESIGN BY: BJW
DATE: 2021-03-02
\qquad

NOTES: Y-DIRECTION

ASCE 7-16- WIND LOADS (ALL HEIGHTS)

Exposure Category		B	Sec. 26.7.3	
Basic Wind Speed	V_ult=	98	mph	PRINT WINDSPEED FROM ONLINE DATABASE TO CALC FOLDER
Directionality Factor		0.85	Table 26.6-1	
Topographic Effects*	$\mathrm{K}_{\mathrm{zt}}=$	$1.9<$	Fig. 26.8-1	
Gust Effect Factor	$\mathrm{G}_{\text {used }}=$	0.85	Sec. 26.1I	CONSERVATIVE, PER
Enclosure Type		Enclosed	Sec. 26.12	PRE-APPLICATION MEETING
Importance Factor	Iw =	1	Table 1.5-1	
Mean Building Height	H =	32.00	ft	
Width Parallel to Wind	L =	55.33	ft	
Width Normal to Wind	$\mathrm{B}=$	64.58	ft	
	L/B_X =	0.86		
	L/B_Y =	0.86		
	$\mathrm{Kz}=$	0.71	(calculated, se	able 27.3-1)
PRESSURE AT MEAN ROOF	$\mathrm{q}_{\mathrm{h}}=$	28.34	psf- ULTIMAT	

$\mathrm{GC}_{\mathrm{pi}}$	$\mathbf{0 . 1 8}$
$\mathrm{Cp}-\mathrm{WW}$	$\mathbf{0 . 8}$
Cp-LW	-0.5
Cp - SW	Worst Case

Description	Floor	Story H	H	$\mathrm{K}_{\mathbf{z}}$	$\mathrm{q}_{\mathbf{z} \text { (psf) }}$	ULTIMATE P net (psf)	Story Wind Force, Fx kips	Story Shear kips
Basement	1	0	0.00	0.57	22.8	27.6	9.1	56.7
Ground	2	10.23	10.23	0.57	22.8	27.6	18.2	47.6
Level 01	3	10.23	20.46	0.63	24.9	29.0	19.2	29.4
High Roof	4	10.23	30.69	0.71	28.0	31.1	10.3	10.3

Sec. 26.12 | $\mathbf{4}$ | Enclosure | |
| ---: | :--- | :---: |
| 2 | Select | N/A |
| 2 | Open | 0 |
| 3 | Partially | 0.55 |
| 4 | Enclosed | 0.18 |

$\begin{array}{c}\text { L/B } \\ \text { Surface }\end{array}$		

Sec.26.7.3 | $\mathbf{2}$ | Exp Cat |
| ---: | :--- |
| 3 | A |
| 2 | B |
| 3 | C |
| 4 | D |

L/B		
Surface	0.86	Cp
Windward Wall		0.8
Leeward Wall		-0.5
L/B 0-1	1	-0.5
L/B 2	2	-0.3
L/B > $=4$	4	-0.2
Side Wa		-0.7

Table Calculate Kz

26.9-1	a	$\mathrm{z}_{\mathrm{g}}(\mathrm{ft})$	a	b	a-bar	b-bar	C	\|	pislon b	$\mathrm{z}_{\text {min }}(\mathrm{ft})$
Exp A	5	1500	0.2	0.64	0.33333	0.3	0.45	180	0.5	60
Exp B	7	1200	0.1429	0.84	0.25	0.45	0.3	320	0.333	30
Exp C	9.5	900	0.1053	1	0.15385	0.65	0.2	500	0.2	15
Exp D	11.5	700	0.087	1.07	0.11111	0.8	0.15	600	0.125	7
calc->	7	1200	0.1429	0.84	0.25	0.45	0.3	320	0.333	30

Fig. 27.3-8 CASE 1, All Heights

	Kz	qz	Wward	Lward	Swall	Net	Wward	Lward	Swall	Net	Governs
H	Use	(psf)	Gcpi (+)			Pos	Gcpi (-)			Neg	
0	0.57	22.82	10.42	-17.14	-21.96	27.56	20.62	-6.94	-11.76	27.56	27.56
10.229	0.57	22.82	10.42	-17.14	-21.96	27.56	20.62	-6.94	-11.76	27.56	27.56
20.458	0.63	24.94	11.86	-17.14	-21.96	29.00	22.06	-6.94	-11.76	29.00	29.00
30.688	0.71	28.00	13.94	-17.14	-21.96	31.08	24.14	-6.94	-11.76	31.08	31.08
			\#VALUE!	-17.14	-21.96	\#VALUE!	\#\#\#\#\#\#	-6.94	-11.76	\#\#\#\#\#\#	\#\#\#\#\#\#
			\#VALUE!	-17.14	-21.96	\#VALUE!	\#\#\#\#\#\#	-6.94	-11.76	\#\#\#\#\#\#	\#\#\#\#\#\#
			\#VALUE!	-17.14	-21.96	\#VALUE!	\#\#\#\#\#\#	-6.94	-11.76	\#\#\#\#\#\#	\#\#\#\#\#\#
			\#VALUE!	-17.14	-21.96	\#VALUE!	\#\#\#\#\#\#	-6.94	-11.76	\#\#\#\#\#\#	\#\#\#\#\#

1.6 | SEISMIC LOADS

A1C Hazards by Location

Search Information

Address:	9319 SE 43rd St, Mercer Island, WA 98040, USA
Coordinates:	$47.5693472,-122.2142869$
Elevation:	341 ft
Timestamp:	$2020-10-30 \mathrm{~T} 18: 37: 39.948 \mathrm{Z}$
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D

Basic Parameters

Name	Value	Description
S_{S}	1.415	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.492	MCE $_{R}$ ground motion (period=1.0s)
S_{MS}	1.415	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	* null	Site-modified spectral acceleration value
S_{DS}	0.944	Numeric seismic design value at 0.2s SA
$\mathrm{S}_{\mathrm{D} 1}$	* null	Numeric seismic design value at 1.0s SA
* See Section 11.4.8		

-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1	Site amplification factor at 0.2s
F_{v}	* null	Site amplification factor at 1.0 s
CR_{S}	0.902	Coefficient of risk (0.2s)
CR_{1}	0.898	Coefficient of risk (1.0s)
PGA	0.606	$\mathrm{MCE}_{\mathrm{G}}$ peak ground acceleration
$\mathrm{F}_{\mathrm{PGA}}$	1.1	Site amplification factor at PGA
PGA_{M}	0.666	Site modified peak ground acceleration

T_{L}	6	Long-period transition period (s)
SsRT	1.415	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.568	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	3.753	Factored deterministic acceleration value (0.2s)
S1RT	0.492	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.548	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
S1D	1.487	Factored deterministic acceleration value (1.0s)
PGAd	1.272	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 1.6 Seismic Loads - LFW (X-Direction)				Sheet no./rev.1	
	Calc. by BW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 23 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

SEISMIC FORCES (ASCE 7-16)

Site parameters

Site class
Mapped acceleration parameters (Section 11.4.2)
at short period
at 1 sec period
Site coefficientat short period (Table 11.4-1)
at 1 sec period (Table 11.4-2)

D, utilizing exception per 11.4.8(2)
$S s=1.415$
$S_{1}=0.492$
$\mathrm{F}_{\mathrm{a}}=1.000$
$F_{v}=1.808$

Spectral response acceleration parameters

at short period (Eq. 11.4-1)
at 1 sec period (Eq. 11.4-2)
$S_{m s}=F_{a}$ * $S s=1.415$
$S_{M 1}=F_{V}{ }^{*} S_{1}=0.890$

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3)
Sos $=2 / 3$ * $S_{\text {ms }}=0.943$
at 1 sec period (Eq. 11.4-4)
$S_{D 1}=2 / 3$ * $S_{M 1}=0.593$

Seismic design category

Occupancy category (Table 1-1)
II

Seismic design category based on short period response acceleration (Table 11.6-1)
D
Seismic design category based on 1 sec period response acceleration (Table 11.6-2)
D
Seismic design category
D

Approximate fundamental period

Height above base to highest level of building
$h_{n}=30.69 \mathrm{ft}$

From Table 12.8-2:
Structure type
All other systems
Building period parameter C_{t}
$\mathrm{C}_{\mathrm{t}}=0.02$
Building period parameter x
$\mathrm{x}=0.75$

Approximate fundamental period (Eq 12.8-7)
Building fundamental period (Sect 12.8.2)
Long-period transition period
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=0.261 \mathrm{sec}$

Limiting period
T = $\mathbf{6} \mathrm{sec}$
$\mathrm{T}_{\mathrm{s}}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{Ds}}$ * $1 \mathrm{sec}=\mathbf{0 . 6 2 9} \mathrm{sec}$

Seismic response coefficient

Seismic force-resisting system (Table 12.2-1)
A. Bearing_Wall_Systems
15. Light-frame (wood) walls sheathed with wood structural panels

Response modification factor (Table 12.2-1)
$\mathrm{R}=6.5$
Seismic importance factor (Table 1.5-2)
$\mathrm{l}=1.000$
Seismic response coefficient (Sect 11.4.8)
Calculated (Eq 12.8-3)
$C_{s _ \text {_calc }}=$ Sbs $/\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)=\mathbf{0 . 1 4 5 1}$
Minimum (Eq 9.5.5.2.1-3)
$\mathrm{C}_{\text {s_min }}=\max \left(0.044{ }^{*} \mathrm{Sos}^{*} \mathrm{l}_{\mathrm{e}}, 0.01\right)=\mathbf{0 . 0 4 1 5}$
Seismic response coefficient
$C_{s}=\mathbf{0 . 1 4 5 1}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 1.6 Seismic Loads - LFW (X-Direction)				Sheet no./rev.2	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Seismic base shear (Sect 12.8.1)

Effective seismic weight of the structure
Seismic response coefficient
Seismic base shear (Eq 12.8-1)

$$
\begin{aligned}
& \mathrm{W}=147.0 \mathrm{kips} \\
& \mathrm{C}_{\mathrm{s}}=\mathbf{0 . 1 4 5 1} \\
& \mathrm{V}=\mathrm{C}_{\mathrm{s}} \text { * } \mathrm{W}=\mathbf{2 1 . 3} \mathrm{kips} \longrightarrow \text { CONSERVATIVELY USE HIGHER WIND } \\
& \text { BASE SHEAR AND DESIGN PER SEISMIC } \\
& \text { PROVISIONS } \\
& C_{v x}=w_{x}{ }^{*} h_{x}{ }^{k} / \Sigma\left(w_{i}{ }^{*} h_{i}{ }^{k}\right) \quad V=47 \mathrm{kips} \\
& \mathrm{~F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{vx}} \text { *V }
\end{aligned}
$$

Vertical distribution of seismic forces (Sect 12.8.3)

Vertical distribution factor (Eq 12.8-12)
Lateral force induced at level i (Eq 12.8-11)

Minimum diaphragm forces (Section 12.10.1.1)

Calculated min. diaphragm force (Eq 12.10-1)

$$
\begin{aligned}
& F_{p x}=\Sigma F_{i}^{*} W_{p x} / \Sigma W_{i},(i=x \text { to } n) \\
& F_{p x \min }=0.2^{*} S_{D s}^{*} \mathrm{l}_{\mathrm{e}}^{*} \mathrm{~W}_{\mathrm{px}} \\
& \mathrm{~F}_{\mathrm{pxmax}}=0.4^{*} \text { SDs }^{*} \mathrm{l}_{\mathrm{e}}^{*} \mathrm{~W}_{\mathrm{px}}
\end{aligned}
$$

Vertical force distribution table

Level	Height from base to Level i (ft), h_{x}	Portion of effective seismic weight assigned to Level i (kips), wx	Distribution exponent related to building period, k	Vertical distributio n factor, Cvx	Lateral force induced at Level i (kips), F_{x}	Weight tributary to the diaphragm at Level i (kips), w_{px}	Minimum diaphragm force at Level i (kips), F_{px}
1	10.2;	58.0;	1.00;	0.231;	-4.9-13	58.0	40.913
2	20.5;	74.0;	1.00;	0.590;	42.626 .1	74.0	44.026 .1
3	30.7;	15.0;	1.00;	0.179;	3.8-8	15.0	3.8-8

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 1.6 Seismic Loads - OMF (Y-Direction)				Sheet no./rev.1	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

SEISMIC FORCES (ASCE 7-16)

Site parameters

Site class D, utilizing exception per 11.4.8(2)
Mapped acceleration parameters (Section 11.4.2)
at short period
at 1 sec period
Site coefficientat short period (Table 11.4-1)
at 1 sec period (Table 11.4-2)

Spectral response acceleration parameters

at short period (Eq. 11.4-1)
at 1 sec period (Eq. 11.4-2)
$S s=1.415$
$S_{1}=0.492$
$\mathrm{F}_{\mathrm{a}}=1.000$
$F_{v}=1.808$
$S_{m s}=F_{a}$ * $S s=1.415$
$S_{M 1}=F_{V}{ }^{*} S_{1}=0.890$

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3)
Sos $=2 / 3$ * $S_{\text {ms }}=0.943$
at 1 sec period (Eq. 11.4-4)
$S_{D 1}=2 / 3$ * $S_{M 1}=0.593$

Seismic design category

Occupancy category (Table 1-1)
II

Seismic design category based on short period response acceleration (Table 11.6-1)
D
Seismic design category based on 1 sec period response acceleration (Table 11.6-2)
D
Seismic design category
D
Approximate fundamental period
Height above base to highest level of building $\quad h_{n}=30.69 \mathrm{ft}$

From Table 12.8-2:

Structure type	All other systems
Building period parameter C_{t}	$\mathrm{C}_{t}=\mathbf{0 . 0 2}$
Building period parameter x	$\mathrm{X}=\mathbf{0 . 7 5}$

Approximate fundamental period (Eq 12.8-7)
Building fundamental period (Sect 12.8.2)
Long-period transition period
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=0.261 \mathrm{sec}$

Limiting period
T = $\mathbf{6} \mathrm{sec}$
$\mathrm{T}_{\mathrm{s}}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{Ds}}$ * $1 \mathrm{sec}=\mathbf{0 . 6 2 9} \mathrm{sec}$

Seismic response coefficient

Seismic force-resisting system (Table 12.2-1)
C_MOMENT_RESISTING_FRAME_SYSTEMS
4. Steel ordinary moment frames

Response modification factor (Table 12.2-1)
$\mathrm{R}=3.5$
Seismic importance factor (Table 1.5-2)
$\mathrm{l}=1.000$
Seismic response coefficient (Sect 11.4.8)
Calculated (Eq 12.8-3)
$C_{s _ \text {calc }}=$ Sbs $/\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)=\mathbf{0 . 2 6 9 5}$
Minimum (Eq 9.5.5.2.1-3)
Cs_min $=\max \left(0.044{ }^{*}\right.$ Sbs * $\left.l_{e}, 0.01\right)=\mathbf{0 . 0 4 1 5}$
Seismic response coefficient
$C_{s}=0.2695$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 1.6 Seismic Loads - OMF (Y-Direction)				Sheet no./rev.2	
	Calc. by BW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 23 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Seismic base shear (Sect 12.8.1)

Effective seismic weight of the structure
Seismic response coefficient
Seismic base shear (Eq 12.8-1)

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{W}=\mathbf{1 4 3 . 0} \mathrm{kips} \\
\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 2 6 9 5} \\
\mathrm{V}=\mathrm{C}_{\mathrm{s}} * \mathrm{~W}=\mathbf{3 8 . 5} \mathrm{kips} \longrightarrow \\
. \mathbf{3)} \\
\mathrm{C}_{v x}=\mathrm{w}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{\mathrm{x}}{ }^{\mathrm{k}} / \Sigma\left(\mathrm{w}_{\mathrm{i}}{ }^{*} \mathrm{~h}_{\mathrm{i}}^{\mathrm{k})} \mathrm{CONSERVATIVELY}\right. \text { USE HIGHER WIND } \\
\begin{array}{l}
\text { BASE SHEAR AND DESIGN PER SEISMIC } \\
\text { PROVISIONS }
\end{array} \\
\mathrm{V}=56.7 \mathrm{kips}
\end{array}
\end{aligned}
$$

Vertical distribution of seismic forces (Sect 12.8.3)
Vertical distribution factor (Eq 12.8-12)
Lateral force induced at level i (Eq 12.8-11)

Minimum diaphragm forces (Section 12.10.1.1)

Calculated min. diaphragm force (Eq 12.10-1)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{px}}=\Sigma \mathrm{F}_{\mathrm{i}}{ }^{*} \mathrm{w}_{\mathrm{px}} / \Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{i}=\mathrm{x} \text { to } \mathrm{n}) \\
& \mathrm{F}_{\mathrm{px} \min }=0.2^{*} \mathrm{SDs}^{*} \mathrm{l}_{\mathrm{e}} \mathrm{w}_{\mathrm{px}} \\
& \mathrm{~F}_{\mathrm{pxmax}}=0.4^{*} \mathrm{Sbs}^{*} \mathrm{l}_{\mathrm{e}}{ }^{*} \mathrm{w}_{\mathrm{px}}
\end{aligned}
$$

Vertical force distribution table

Level	Height from base to Level i (ft), h_{x}	Portion of effective seismic weight assigned to Level i (kips), wx	Distribution exponent related to building period, k	Vertical distributio n factor, Cvx	Lateral force induced at Level i (kips), F_{x}	Weight tributary to the diaphragm at Level i (kips), w_{px}	Minimum diaphragm force at Level i (kips), F_{px}
1	10.2;	58.0;	1.00;	0.239;	$\bigcirc .215 .6$	58.0	45.615 .6
2	20.5;	70.0;	1.00;	0.576;	22.231 .6	70.0	24.231 .6
3	30.7;	15.0;	1.00;	0.185;	7.49 .6	15.0	5.789 .6

2 | GRAVITY DESIGN

2.1 | WOOD FRAMING DESIGN

High Roof				
Member Name	Results	Current Solution	Comments	
J9 Roof: Joist (11 7/8" TJI)	Passed	1 piece(s) 11 7/8" TJI® 360 @ 16" OC		
B15 High Roof: Beam (PSL)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 117 / 8{ }^{\text {" }} 2.2 \mathrm{E}$ Parallam® PSL		
Garage Roof				
Member Name	Results	Current Solution	Comments	
J9 Roof: Joist (11 7/8" TJI)	Passed	1 piece(s) 11 7/8" TJI® 360 @ 16" OC		
B13 Garage Roof: Edge Beam (LVL)	Passed	2 piece(s) 1 3/4" $\times 11$ 7/8" 2.0 E Microllam® LVL		
Main Level				
Member Name	Results	Current Solution	Comments	
J1 Kitchen: Joist (16" TJI)	Passed	1 piece(s) 16" TJI® 210 @ 16" OC		
J1 Family Room: Joist (16" TJI)	Passed	1 piece(s) 16" TJI® 210 @ 16" OC		
J2 Living Room: (16" TJI)	Passed	1 piece(s) $16^{\prime \prime} \mathrm{TJI®} 230$ @ 16" OC		
J3 Exterior Deck: Joist (9.5" LVL)	Passed	1 piece(s) 1 3/4" $\times 9$ 1/2" 2.0E Microllam® LVL @ 16" OC		
$\begin{array}{\|l\|} \hline \text { J4 Exterior Deck Short: Joist } \\ (2 \times 10) \end{array}$	Passed	1 piece(s) 2×10 Douglas Fir-Larch No. 1 @ 16" OC		
J 8 Main Level Shower: Joist (117/8" TJI)	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC		
B1 Kitchen: Flush Beam 1	Passed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 EP Parallam ${ }^{\text {® }}$ PSL		
B1 Kitchen: Flush Beam 2	Passed	1 piece(s) $51 / 4$ " $\times 16{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~}{ }^{\text {® P PL }}$		
B1 Kitchen: Flush Beam 3	Passed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 E Parallam® PSL		
B1 Dining Room: Flush Beam	Passed	1 piece(s) $51 / 4 " \times 16{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~}{ }^{\text {® PSL }}$		
B1 Main Level Shower: Flush Beam (16" PSL)	Passed	1 piece(s) $51 / 4$ " $\times 16{ }^{\text {" }} 2.2$ E Parallam ${ }^{8}$ PSL		
B1 Main Level: Transfer Beam 1 (16" PSL)	Passed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 E Parallam® PSL		
B1 Main Level: Transfer Beam 2 (16" PSL)	Passed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 E Parallam® PSL		
B4 Exterior Deck: South Flush Beam (14" PSL)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 14{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~ P S L ~}$		
B5 Main Level: Wall Transfer Beam 1	Failed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 E Parallam® PSL	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B5 Main Level: Wall Transfer Beam 2	Failed	1 piece(s) $51 / 4$ " $\times 16$ " 2.2 E Parallam® PSL	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B6 Exterior Deck: Flush Beam	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 9$ 1/2" 2.2 EP Parallam® PSL		
B6 Exterior Deck: Flush Beam (East)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 9$ 1/2" 2.2 E Parallam ${ }^{\text {® }}$ PSL		
B6 Kitchen: Transfer Beam	Failed	1 piece(s) $51 / 4$ " $\times 9$ 1/2" 2.2E Parallam ${ }^{\text {® }}$ PSL	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B12 Family Room: Wall Transfer Beam 2	Failed	1 piece(s) $51 / 4$ " $\times 14$ " 2.2E Parallam® PSL	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B18 Family Room: Wall Transfer Beam 1	Failed	1 piece(s) $31 / 2$ " $\times 14$ " 2.2E Parallam ${ }^{\text {® P PSL }}$	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B19 Family Room: Transfer Beam 3	Failed	1 piece(s) $51 / 4$ " $\times 14$ " 2.2E Parallam® PSL	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B19 Family Room: Transfer Beam 4	Failed	1 piece(s) $51 / 4$ " $\times 14$ " 2.2E Parallam® ${ }^{\text {® PSL }}$	Multiple Failures/Errors	SEE NOTES IN CALCULATIONS
B20 Living Room: Drop Beam	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 16{ }^{\text {" }} 2.2$ E Parallam ${ }^{\text {® }}$ PSL		
C7 Post Transfer	Passed	1 piece(s) $51 / 4$ " $\times 7$ " 1.8 E Parallam® PSL		

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Upper Level			
Member Name	Results	Current Solution	Comments
J 5 Upper Level: Joist (14" TJI)	Passed	1 piece(s) 14" TJI® 360 @ 12" OC	
J 6 Upper Deck: Joist - Long (117/8" TJI)	Passed	1 piece(s) $117 / 8^{\prime \prime}$ TJI® 560 @ 12" OC	
J8 Upper Deck: Joist - Short (11- $7 / 8$ " TJI)	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
J 8 Stair Roof: Joist (11-7/8" TJI)	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
$\begin{array}{\|l} \hline \text { J9 Upper Deck: Joist - Med (11- } \\ \left.7 / 8{ }^{\prime \prime} \mathrm{TJI}\right) \\ \hline \end{array}$	Passed	1 piece(s) 11 7/8" TJI® 230 @ 12" OC	
J 10 Upper Level Shower: Joist (9 -1/2" TJI)	Passed	1 piece(s) 9 1/2" TJI® 110 @ 16" OC	
J 11 Upper Deck: Joist (11-7/8" TJI)	Passed	1 piece(s) 11 7/8" TJI® 110 @ 24" OC	
B4 Upper Level Shower: Short Flush Beam (14" PSL)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 14{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~ P S L ~}$	
B4 Upper Level Shower: Long Flush Beam (14" PSL)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 14{ }^{\text {" }} 2.2 \mathrm{EParallam®}{ }^{\text {® PSL }}$	
B4 Upper Level: Flush Beam (14" PSL)	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 14{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~}{ }^{\text {® PSL }}$	
B4 Upper Level: Transfer Beam 4 (14" PSL)	Passed	1 piece(s) 3 1/2" $\times 14$ " 2.2E Parallam® PSL	
B7 Upper Level: Typical Header Beam (2-2x10)	Passed	2 piece(s) 2×10 Spruce-Pine-Fir No. $1 /$ No. 2	
B12 Upper Level: Flush Beam (14" PSL)	Passed	1 piece(s) $51 / 4{ }^{\prime \prime} \times 14{ }^{\text {" } 2.2 E ~ P a r a l l a m ® ~}{ }^{\text {® }}$ PL	
B12 Upper Level: Transfer Beam (14" PSL)	Failed	1 piece(s) $51 / 4$ " $\times 14$ " 2.2E Parallam® PSL	An excessive uplift of -2553 lbs at support located at $31 / 2^{\prime \prime}$ failed this product.
B12 Upper Level: Transfer Beam 2 (14" PSL)	Failed	1 piece(s) $51 / 4$ " $\times 14$ " 2.2 E Parallam® PSL	Multiple Failures/Errors
B12 Upper Level: Transfer Beam 3 (14" PSL)	Failed	1 piece(s) $51 / 4{ }^{\prime \prime} \times 14$ " 2.2E Parallam® ${ }^{\text {® PSL }}$	Multiple Failures/Errors
$\begin{aligned} & \text { B13 Upper Deck: Edge Beam (11 } \\ & \text {-7/8" LVL) } \end{aligned}$	Passed	2 piece(s) $13 / 4$ " $\times 11$ 7/8" 2.0E Microllam® LVL	
B13 Upper Deck: Flush Beam (11 -7/8" LVL)	Passed	2 piece(s) $13 / 4$ " $\times 11$ 7/8" 2.0E Microllam® LVL	
B13 Upper Deck: Edge Beam 2 (11-7/8" LVL)	Passed	2 piece(s) $13 / 4$ " $\times 11$ 7/8" 2.0E Microllam ${ }^{8}$ LVL	
B13 Upper Deck: Edge Beam 3 (11-7/8" LVL)	Passed	2 piece(s) 1 3/4" $\times 11$ 7/8" 2.0E Microllam® LVL	
B14 Upper Deck: Long Flush Beam (11-7/8" PSL)	Passed	1 piece(s) 7" $\times 11$ 7/8" 2.2E Parallam® PSL	
B15 Upper Deck: Short Flush Beam (11-7/8" PSL)	Passed	1 piece(s) 3 1/2" $\times 11$ 7/8" 2.2 E Parallam® PSL	

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

High Roof, J9 Roof: Joist (117/8" TJI)
1 piece(s) 11 7/8" TJI® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$590 @ 31 / 2^{\prime \prime}$	$1242(1.75 ")$	Passed (48\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$590 @ 31 / 2^{\prime \prime}$	1961	Passed (30\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Member Type : Joist					
Moment (Ft-lbs)	$2901 @ 10^{\prime} 11 / 2^{\prime \prime}$	7107	Passed (41\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.356 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.656	Passed (L/663)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.534 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.983	Passed (L/442)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Hanger on 11 7/8" PSL beam	$3.50{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.75" / - ${ }^{\text {2 }}$	202	270	405	877	See note ${ }^{1}$
2 - Hanger on $117 / 8{ }^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	202	270	405	877	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 77^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$19^{\prime} 8$ " o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.37/11.88	2.00 "	N/A	$10-10 \mathrm{dx1} .5$	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.37/11.88	2.00 "	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 20' 3 "	$16 "$	15.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1926 @ 2 "$	$3347(2.25 ")$	Passed (58\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1560 @ 11^{\prime} 33 / 8^{\prime \prime}$	9241	Passed (17\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$5839 @ 66^{\prime} 31 / 2^{\prime \prime}$	22888	Passed (26\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.101 @ 6^{\prime} 31 / 2^{\prime \prime}$	0.306	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.161 @ 66^{\prime} 31 / 2^{\prime \prime}$	0.613	Passed (L/910)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Stud wall - SPF	3.50"	2.25"	1.50 "	733	653	979	2365	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50 "	733	653	979	2365	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 5^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $12^{\prime} 53 / 4^{\prime \prime}$	N/A	13.0	--	--	
1 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	$5^{\prime} 21 / 4^{\prime \prime}$	20.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$730 @ 31 / 2^{\prime \prime}$	$1242\left(1.75{ }^{\prime \prime}\right)$	Passed (59\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$730 @ 31 / 2^{\prime \prime}$	1961	Passed (37\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Member Type : Joist					
Moment (Ft-lbs)	$4441 @ 12^{\prime} 51 / 2^{\prime \prime}$	7107	Passed (62\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.806 @ 12^{\prime} 51 / 2^{\prime \prime}$	0.811	Passed (L/362)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$1.209 @ 12^{\prime} 51 / 2^{\prime \prime}$	1.217	Passed (L/241)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Hanger on 11 7/8" PSL beam	3.50 "	Hanger ${ }^{1}$	1.75" / - ${ }^{\text {2 }}$	249	332	498	1079	See note ${ }^{1}$
2 - Hanger on 11 7/8" PSL beam	3.50 "	Hanger ${ }^{1}$	1.75" / - 2	249	332	498	1079	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 5{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$24^{\prime} 4$ " o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.37/11.88	2.00 "	N/A	$10-10 \mathrm{dx1} .5$	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.37/11.88	2.00 "	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $24^{\prime} 11^{\prime \prime}$	$16 "$	15.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

Garage Roof, B13 Garage Roof: Edge Beam (LVL)
2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	2748 @ $31 / 2^{\prime \prime}$	3938 (1.50")	Passed (70\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	2205 @ 1'3 3/8"	9081	Passed (24\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	6883 @ 5' 3 5/8"	20525	Passed (34\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.099 @ 5' 3 5/8"	0.251	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.146 @ 5' 3 5/8"	0.501	Passed (L/821)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	936	1166	1458	3560	See note ${ }^{1}$
2 - Hanger on $117 / 8{ }^{\text {" SPF beam }}$	3.50"	Hanger ${ }^{1}$	1.50"	936	1166	1458	3560	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS48	3.00 "	N/A	22-10d	8-10d	
2 - Face Mount Hanger	HHUS48	3.00 "	N/A	22-10d	8-10d	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $10^{\prime} 33 / 4^{\prime \prime}$	N / A	12.1	--	--	
1 - Uniform (PSF)	0 to $10^{\prime} 71 / 4^{\prime \prime}$ (Front)	11^{\prime}	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, J1 Kitchen: Joist (16" TJI)
1 piece(s) 16 " $\mathrm{TJ} 1 ® 210 @ 16$ OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$529 @ 31 / 2^{\prime \prime}$	$1005\left(1.75^{\prime \prime}\right)$	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$529 @ 31 / 2^{\prime \prime}$	2190	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1499 @ 5^{\prime} 111 / 2^{\prime \prime}$	5140	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.037 @ 5^{\prime} 111 / 2^{\prime \prime}$	0.283	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Total Load Defl. (in)	$0.066 @ 5^{\prime} 111 / 2^{\prime \prime}$	0.567	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	64	50	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	238	318	556	See note 1
2- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	238	318	556	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 2 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime \prime} 4 \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS2.06/16	$2.000^{\prime \prime}$	N/A	$14-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.06/16	2.00	N/A	$14-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $11^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
(347) 435-2377
bwu@fastepp.com

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$727 @ 31 / 2^{\prime \prime}$	$1005\left(1.75^{\prime \prime}\right)$	Passed (72\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$727 @ 31 / 2^{\prime \prime}$	2190	Passed (33\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2833 @ 8^{\prime} 1^{\prime \prime}$	5140	Passed (55\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.115 @ 8^{\prime} 1^{\prime \prime}$	0.390	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Total Load Defl. (in)	$0.201 @ 8^{\prime} 1^{\prime \prime}$	0.779	Passed (L/931)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	55	50	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	323	431	754	See note 1
2- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	323	431	754	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 2 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS2.06/16	$2.000^{\prime \prime}$	N/A	$14-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.06/16	2.00	N/A	$14-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1- Uniform (PSF)	0 to $16^{\prime} 2^{\prime \prime}$	$16^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, J2 Living Room: (16" TJI)
1 piece(s) 16 " TJI ${ }^{\circledR} 230$ @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	392	522	914	See note 1
2- Hanger on 16" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-{ }^{2}$	392	522	914	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	19 o o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.37/16	2.00	$\mathrm{~N} / \mathrm{A}$	14-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $19^{\prime} 7^{\prime \prime}$	$16^{\prime \prime}$	30.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, J3 Exterior Deck: Joist (9.5" LVL)
1 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 4% increase in the moment capacity has been added to account for repetitive member usage.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32^{\prime \prime}$ Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: bridging or blocking at max. 8' o.c..

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $91 / 2^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.50"	269	538	269	1076	See note ${ }^{1}$
2 - Hanger on $91 / 2^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.50"	269	538	269	1076	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 11^{\circ} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$12^{\prime} 11^{\prime \prime} \mathrm{o} \mathrm{C}$	

\bullet Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/9.5	$2.00^{\prime \prime}$	N/A	$8-10 \mathrm{~d} \times 1.5$	$2-10 \mathrm{dx1.5}$	
2 - Face Mount Hanger	IUS1.81/9.5	$2.00^{\prime \prime}$	N / A	$8-10 \mathrm{~d} \times 1.5$	$2-10 \mathrm{~d} \times 1.5$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 51 / 2^{\prime \prime}$	$16^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at responsibeuse facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387
Weyerhaeuser and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

Main Level, J4 Exterior Deck Short: Joist (2×10)
1 piece(s) $\mathbf{2 \times 1 0}$ Douglas Fir-Larch No. 1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	279 @ $31 / 2$ "	1406 (1.50")	Passed (20\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	165 @ 1'3/4"	1665	Passed (10\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	276 @ 2' $51 / 4 "$	2255	Passed (12\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.004 @ $2^{\prime} 51 / 4 "$	0.107	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.006 @ 2' 5 1/4"	0.215	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)				
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1- Hanger on 9 1/4" PSL beam	$3.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	97	195	97	389	See note 1
2- Hanger on 9 1/4" PSL beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	97	195	97	389	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 4$ " o/c	
Bottom Edge (Lu)	$4^{\prime} 4 "$ o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS28	$1.75^{\prime \prime}$	N / A	$6-10 \mathrm{dx1.5}$		
2 - Face Mount Hanger	LUS28	$1.75^{\prime \prime}$	N / A	$6-10 \mathrm{~d}$		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1- Uniform (PSF)	0 to $4^{\prime} 101 / 2^{\prime \prime}$	$16^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$210 @ 31 / 2^{\prime \prime}$	$910\left(1.75^{\prime \prime}\right)$	Passed (23\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$210 @ 31 / 2^{\prime \prime}$	1560	Passed (13\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$236 @ 2^{\prime} 61 / 2^{\prime \prime}$	3160	Passed (7\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.004 @ 22^{\prime} 61 / 2^{\prime \prime}$	0.112	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Total Load Defl. (in)	$0.007 @ 2^{\prime} 61 / 2^{\prime \prime}$	0.225	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	72	50	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $117 / 8{ }^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - ${ }^{2}$	102	136	238	See note ${ }^{1}$
2 - Hanger on 11 7/8" PSL beam	3.50 "	Hanger ${ }^{1}$	1.75" / - 2	102	136	238	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS1.81/11.88	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 1.81 / 11.88$	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1- Uniform (PSF)	0 to 5' $1 "$	$16^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, B1 Kitchen: Flush Beam 1

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1833 @ 31 / 2^{\prime \prime}$	$4922(1.50 ")$	Passed (37\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1269 @ 1^{\prime} 71 / 2^{\prime \prime}$	16240	Passed (8\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Member Type : Flush Beam					
Building Use : Residential					
Building Code : IBC 2018					
Dement (Ft-lbs)	$3971 @ 4^{\prime} 71 / 2^{\prime \prime}$	52432	Passed (8\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.010 @ 4^{\prime} 71 / 2^{\prime \prime}$	0.217	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.019 @ 4^{\prime} 71 / 2^{\prime \prime}$	0.433	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	900	1048	1948	See note 1
2- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	900	1048	1948	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 88^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 8{ }^{\prime \prime} \circ / \mathrm{C}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS25212	16 -SDS25212	
2 - Face Mount Hanger	MGU5.50-SDS H=15.938	4.50	N/A	$24-$ SDS25212	$16-$ SDS25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $8^{\prime} 111 / 2^{\prime \prime}$	N / A	26.3	--	
1 - Uniform (PSF)	0 to $9^{\prime} 3^{\prime \prime}$ (Front)	$5^{\prime} 8^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Main Level, B1 Kitchen: Flush Beam 2

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3604 @ 31 / 2^{\prime \prime}$	$4922(1.50 ")$	Passed (73\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$3040 @ 1^{\prime} 71 / 2^{\prime \prime}$	16240	Passed (19\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Member Type : Flush Beam					
Building Use : Residential					
Building Code : IBC 2018					
Doment (Ft-lbs)	$15353 @ 8^{\prime} 93 / 4^{\prime \prime}$	52432	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	$0.119 @ 8^{\prime} 93 / 4^{\prime \prime}$	0.426	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.223 @ 8^{\prime} 93 / 4^{\prime \prime}$	0.852	Passed (L/918)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1722	1998	3720	See note ${ }^{1}$
2- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1722	1998	3720	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 1 " o / c$	
Bottom Edge (Lu)	$17^{\prime} 11^{\prime \prime} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS25212	$16-$ SDS25212	
2 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS 25212	$16-$ SDS 25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $17^{\prime} 4 "$	$\mathrm{~N} / \mathrm{A}$	26.3	--	
1 - Uniform (PSF)	0 to $17^{\prime} 71 / 2^{\prime \prime}$ (Front)	$58^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Main Level, B1 Kitchen: Flush Beam 3

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

Overall Length: 3' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4604 @ 31 / 2^{\prime \prime}$	$4922(1.50 ")$	Passed (94\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1382 @ 171 / 2^{\prime \prime}$	16240	Passed (9\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2681 @ 101 / 2^{\prime \prime}$	52432	Passed (5\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.002 @ 101 / 2^{\prime \prime}$	0.075	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.004 @ 101 / 2^{\prime \prime}$	0.150	Passed (L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on SPF studWall	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	2152	2453	4605	See note 1
2 - Hanger on SPF studWall	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	549	592	1141	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		
2 - Top Mount Hanger	HB5.50/16	3.50	$6-16 \mathrm{~d}$	N		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $3^{\prime} 31 / 2^{\prime \prime}$	N / A	26.3	--	
1 - Point (Ib)	$101 / 2^{\prime \prime}$ (Front)	N / A	2622	3045	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Main Level, B1 Dining Room: Flush Beam

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	5963 @ 3 1/2"	5963 (1.82")	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	4866 @ 1' 7 1/2"	16240	Passed (30\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	21616 @ 7' $61 / 2^{\prime \prime}$	52432	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.130 @ 7' $61 / 2^{\prime \prime}$	0.363	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Total Load Defl. (in)	0.234 @ 7' 6 1/2"	0.725	Passed (L/742)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.82^{\prime \prime}$	2764	3431	6195	See note ${ }^{1}$
2- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.82^{\prime \prime}$	2764	3431	6195	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 6 \mathrm{\prime} \mathrm{\prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 6 \mathrm{o} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS25212	$16-$ SDS25212	
2 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS 25212	$16-$ SDS 25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $14^{\prime} 91 / 2^{\prime \prime}$	N / A	26.3	--	
1 - Uniform (PSF)	0 to $15^{\prime} 1^{\prime \prime}$ (Front)	$11^{\prime} 41 / 2^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Main Level, B1 Main Level Shower: Flush Beam (16" PSL)
1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location		Allowed	Result		LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1229 @ 3 1/2"		4922 (1.50")	Passed (25\%)		-- 1.0	1.0 D + 1.0 L (All Spans)
Shear (lbs)	458 @ 1' 7 1/2"		16240	Passed (3\%)		1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	1306 @ 2' 5"		52432	Passed (2\%)		1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.001 @ 2' 5"		0.106	Passed (L/999+)		-- 1.	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.003 @ 2' 5"		0.213	Passed (L/999+)		-- 1.0	1.0 D + 1.0 L (All Spans)
- Deflection criteria: LL (L/480) and TL (L/240). - Allowed moment does not reflect the adjustment for the beam stability factor.							
Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	e Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 16" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	627	762	1389	See note ${ }^{1}$
2 - Hanger on 16" SPF beam	3.50 "	Hanger ${ }^{1}$	1.50"	627	762	1389	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50^{\prime \prime}$	N/A	$24-$ SDS25212	16 -SDS25212	
2 - Face Mount Hanger	MGU5.50-SDS H=15.938	4.50	N/A	$24-$ SDS25212	$16-$ SDS25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $4^{\prime} 61 / 2^{\prime \prime}$	N / A	26.3	--	
1 - Uniform (PSF)	0 to $4^{\prime} 10^{\prime \prime}$ (Front)	$7^{\prime} 105 / 8^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	3786 @ 3 1/2"	4922 (1.50")	Passed (77\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	2563 @ 1' $71 / 2^{\prime \prime}$	16240	Passed (16\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	7809 @ 4' 5"	52432	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.021 @ 4' 5"	0.275	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Total Load Defl. (in)	0.034 @ 4' 5"	0.412	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on 16" SPF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1588	2459	4047	See note ${ }^{1}$
2 - Hanger on SPF studWall	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1588	2459	4047	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	8' 3 l o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	4.50		N/A	$24-$ SDS25212	$16-$ SDS25212
2 - Top Mount Hanger	HB5.50/16	$3.50^{\prime \prime}$	$6-16 \mathrm{~d}$	$16-16 \mathrm{~d}$	$10-16 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $8^{\prime} 61 / 2^{\prime \prime}$	N/A	26.3	--	
1 - Uniform (PSF)	0 to $8^{\prime} 10 "$ (Front)	$5^{\prime} 6^{\prime \prime}$	30.0	60.0	
2 - Uniform (PSF)	0 to $8^{\prime} 10^{\prime \prime}$ (Front)	$5^{\prime} 8^{\prime \prime}$	30.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operato
ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	3482 @ 3 1/2"	4922 (1.50")	Passed (71\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	2709 @ 1'71/2"	16240	Passed (17\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	10447 @ 6' 3 1/2"	52432	Passed (20\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.047 @ 6' $31 / 2{ }^{\prime \prime}$	0.400	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)		
Total Load Defl. (in)	0.082 @ 6' 3 1/2"	0.600	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Total	
1- Hanger on SPF studWall	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1557	2087	3644	See note ${ }^{1}$
2 - Hanger on SPF studWall	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1557	2087	3644	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	HB5.50/16	$3.500^{\prime \prime}$	$6-16 \mathrm{~d}$	$16-16 \mathrm{~d}$	$10-16 \mathrm{~d}$	
2 - Top Mount Hanger	HB5.50/16	$3.500^{\prime \prime}$	$6-16 \mathrm{~d}$	$16-16 \mathrm{~d}$	$10-16 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $12^{\prime} 31 / 2^{\prime \prime}$	N/A	26.3	--	
1 - Uniform (PSF)	0 to $12^{\prime} 7 "$ (Front)	$1^{\prime} 9 "$	30.0	60.0	
2 - Uniform (PSF)	0 to $12^{\prime} 7 "$ (Front)	$5^{\prime} 8 "$	30.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operato

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3077 @ $2 "$	$5206(3.50 ")$	Passed (59\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans)
Shear (lbs)	$2952 @ 9 ' 51 / 4^{\prime \prime}$	9473	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$-7654 @ 11^{\prime} 21 / 4^{\prime \prime}$	27162	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.067 @ 5^{\prime} 35 / 8^{\prime \prime}$	0.276	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.094 @ 5^{\prime} 23 / 4^{\prime \prime}$	0.551	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240)
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Stud wall - SPF	$3.50{ }^{\prime \prime}$	3.50 "	2.07"	951	1916/-153	920	$\begin{gathered} 3787 /- \\ 153 \end{gathered}$	Blocking
2-Stud wall - SPF	14.00"	14.00"	5.46 "	2633	4883	2441	9957	None
3-Stud wall - SPF	3.50 "	3.50"	1.60 "	657	1593/-373	703	$\begin{gathered} 2953 /- \\ 373 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 2^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$20^{\prime} 2^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $20^{\prime} 2^{\prime \prime}$	N/A	15.3	--	--	
1 - Uniform (PSF)	0 to $20^{\prime} 2^{\prime \prime}$ (Front)	$6^{\prime} 6^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Main Level, B5 Main Level: Wall Transfer Beam 1

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

An excessive uplift of -4316 lbs at support located at $31 / 2^{\prime \prime}$ failed this product.
An excessive uplift of -16885 lbs at support located at $10^{\prime} 3^{\prime \prime}$ failed this product. SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY
An excessive uplift of -3548 lbs at support located at $16^{\prime} 2^{\prime \prime}$ failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	17325 @ 10' 3"	18047 (5.50")	Passed (96\%)	--	1.0 D + 0.7 E (All Spans)
Shear (lbs)	13594 @ 8' $81 / 4{ }^{\prime \prime}$	25984	Passed (52\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Moment (Ft-lbs)	27880 @ 6' $71 / 2^{\prime \prime}$	83891	Passed (33\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Live Load Defl. (in)	-0.131 @ 6' 7 1/2"	0.249	Passed (L/909)	--	0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	0.133 @ 6' 7 1/2"	0.498	Passed (L/902)	--	1.0 D + 0.7 E (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Seismic	Total	
1 - Hanger on 16" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	106	6256/-6256	$\begin{gathered} 6362 /- \\ 6256 \end{gathered}$	See note ${ }^{1}$
2-Column - SPF	5.50"	5.50 "	5.28"	275	$\begin{gathered} 24357 /- \\ 24357 \end{gathered}$	$\begin{gathered} 24632 /- \\ 24357 \end{gathered}$	None
3-Column - SPF	3.50"	2.25"	1.50"	38	5101/-5101	$\begin{gathered} 5139 /- \\ 5101 \end{gathered}$	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$15^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

\bullet •Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=15.938	$4.50 "$	N/A	$24-$ SDS25212	16 -SDS25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Seismic $(\mathbf{1 . 6 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $16^{\prime} 23 / 4^{\prime \prime}$	N / A	26.3	--	
1 - Point (Ib)	$6^{\prime} 71 / 2^{\prime \prime}$ (Front)	N / A	-	25512	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Main Level, B5 Main Level: Wall Transfer Beam 2

1 piece(s) 5 1/4" x 16" 2.2E Parallam® PSL

An excessive uplift of -13625 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -3977 lbs at support located at 16' 7 1/4" failed this product

SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY

Overall Length: 16 ' 10 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 4$ " o/c	
Bottom Edge (Lu)	$16^{\prime} 4$ " o/c	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		
2 - Top Mount Hanger	Connector not found	N/A	N / A	N		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Seismic (1.60)	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $16^{\prime} 71 / 4^{\prime \prime}$	N/A	26.3	--	
1 - Point (lb)	$4^{\prime} 1 / 2^{\prime \prime}$ (Front)	N/A	-	25512	

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, B6 Exterior Deck: Flush Beam

1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	2167 @ 3 1/2"	3281 (1.50")	Passed (66\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	1518 @ 1' 1"	6428	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	3275 @ 3' 6 3/4"	13057	Passed (25\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.041 @ 3' 6 3/4"	0.164	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.061 @ 3' 6 3/4"	0.327	Passed (L/999+)	--	1.0 D + 0.75 L + 0.75 S (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $91 / 2^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	749	1429	715	2893	See note ${ }^{1}$
2 - Hanger on $91 / 2^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	749	1429	715	2893	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 7 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 7 \mathrm{\prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS48	3.00 "	N/A	22-10d	8-10d	
2 - Face Mount Hanger	HHUS48	3.00 "	N/A	22-10d	8-10d	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $6^{\prime} 10 "$	$\mathrm{~N} / \mathrm{A}$	10.4	--	--	
1 - Uniform (PSF)	0 to $7^{\prime} 11 / 2^{\prime \prime}$ (Front)	$6^{\prime} 81 / 4^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, B6 Exterior Deck: Flush Beam (East)
1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL

Overall Length: $14^{\prime} 7^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1749 @ 3 1/2"	3281 (1.50")	Passed (53\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	1612 @ 1' 1"	6428	Passed (25\%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4979 @ 3' 4 3/4"	13057	Passed (38\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.178 @ 6' $57 / 16^{\prime \prime}$	0.350	Passed (L/946)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.273 @ 6' $61 / 16^{\prime \prime}$	0.700	Passed (L/615)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $91 / 2^{\prime \prime}$ SPF beam	$3.50{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50 "	589	1031	516	2136	See note ${ }^{1}$
2 - Hanger on $91 / 2^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	220	294	147	661	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS48	$3.00^{\prime \prime}$	N/A	$22-10 \mathrm{~d}$	8 -10d	
2 - Face Mount Hanger	HHUS48	3.00	$\mathrm{~N} / \mathrm{A}$	$22-10 \mathrm{~d}$		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $14^{\prime} 31 / 2^{\prime \prime}$	N / A	10.4	--	--	
1 - Point (Ib)	$3^{\prime} 43 / 4^{\prime \prime}$ (Front)	N / A	663	1325	663	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

Main Level, B6 Kitchen: Transfer Beam

1 piece(s) 5 1/4" x 9 1/ 2" 2.2E Parallam® PSL

An excessive uplift of -1300 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -2090 lbs at support located at $15^{\prime} 10$ " failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location		Allowed	Result			Load: Combination (Pattern)		System: Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD SEISMIC CASE W/ OVERSTRENGTH IS NOT APPLICABLE FOR SERVICEABILITY DEFLECTION
Member Reaction (lbs)	2679 @ 15'		(1.50")	Passed		1.0 D	+ 0.7	(All Spans)	
Shear (lbs)	2667 @ 15'		5428	Passed		1.601 .0	+ 0.7	(All Spans)	
Moment (Ft-lbs)	17676 @ 9' 1		31337	Passed		1.60 1.0 D	+ 0.7	(All Spans)	
Live Load Defl. (in)	-0.682 @ 8' 4		0.389	Failed (L		0.6 D	-0.7E	(All Spans)	
Total Load Defl. (in)	0.819 @ 8' 2		0.777	Failed (L		1.0 D	+ 0.7 E	(All Spans)	
- Deflection criteria: LL (L/480) and TL (L/240). - Allowed moment does not reflect the adjustment for the beam stability factor.									
Supports	Bearing Length			Loads to Supports (Ibs)					
	Total	Available	Required	Dead	Floor Live	Seismic	Total	Accessories	
1 - Hanger on $91 / 2^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	774	760	2521/-2521	$\begin{gathered} 4055 /- \\ 2521 \end{gathered}$	See note ${ }^{1}$	
2 - Hanger on 9 1/2" SPF beam	3.50 "	Hanger ${ }^{1}$	1.50 "	368	288	3301/-3301	$\begin{gathered} 3957 /- \\ 3301 \end{gathered}$	See note ${ }^{1}$	

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$15^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} 7 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HU68	$2.50 "$	N/A	$14-16 \mathrm{~d}$	$6-16 \mathrm{~d}$	
2 - Face Mount Hanger	HHUS5.50/10	$3.00 "$	N/A	$30-10 \mathrm{~d}$	$10-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $15^{\prime} 10^{\prime \prime}$	N/A	15.6	--	--	
1 - Point (lb)	$9^{\prime} 11 / 4^{\prime \prime}$ (Front)	N/A	-	-	5822	Default Load
2 - Point (lb)	$4^{\prime} 63 / 4^{\prime \prime}$ (Front)	N/A	900	1048	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Weyerhaeuser

Main Level, B12 Family Room: Wall Transfer Beam 2

1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL

An excessive uplift of -5443 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -2131 lbs at support located at $15^{\prime} 61 / 4^{\prime \prime}$ failed this product

SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY

Overall Length: 15 ' $93 / 4^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5723 @ 31 / 2^{\prime \prime}$	$5723\left(1.74^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	$5696 @ 1^{\prime} 51 / 2^{\prime \prime}$	22736	Passed (25\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Moment (Ft-lbs)	$24819 @ 44^{\prime \prime}$	65188	Passed (38\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Live Load Defl. (in)	$-0.318 @ 7^{\prime} 13 / 4^{\prime \prime}$	0.381	Passed (L/575)	--	$0.6 \mathrm{D}-0.7 \mathrm{E}$ (All Spans)
Total Load Defl. (in)	$0.329 @ 7^{\prime} 21 / 16^{\prime \prime}$	0.761	Passed (L/555)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.74"	175	7926/-7926	$\begin{gathered} 8101 /- \\ 7926 \end{gathered}$	See note ${ }^{1}$
2 - Hanger on SPF studWall	3.50"	Hanger ${ }^{1}$	1.50"	175	3195/-3195	$\begin{gathered} 3370 /- \\ 3195 \end{gathered}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$15^{\prime} 3$ " o/c	
Bottom Edge (Lu)	$15^{\prime} 3$ " o/c	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	MGU5.50-SDS H=13.938	$4.50 "$	N/A	$24-$ SDS25212	16 -SDS25212	
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Seismic (1.60)	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $15^{\prime} 61 / 4^{\prime \prime}$	N/A	23.0	--	
1 - Point (lb)	$4^{\prime} 8^{\prime \prime}$ (Front)	N/A	-	11121	

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, B18 Family Room: Wall Transfer Beam 1

1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL

An excessive uplift of -11355 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -3607 lbs at support located at $15^{\prime} 61 / 4^{\prime \prime}$ failed this product

SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY

Overall Length: 15 ' $93 / 4^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$2^{\prime} 9 "$ o/c	
Bottom Edge (Lu)	4 o/c	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N / A	N / A	N / A	
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Seismic (1.60)	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $15^{\prime} 61 / 4^{\prime \prime}$	N/A	15.3	--	
1 - Point (lb)	4^{\prime} (Front)	N/A	-	21574	

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Level, B19 Family Room: Transfer Beam 3

1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL
An excessive uplift of -8038 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -3131 lbs at support located at $13^{\prime} 73 / 4^{\prime \prime}$ failed this product. SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY

Overall Length: $13^{\prime} 93 / 4^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$8418 @ 31 / 2^{\prime \prime}$	$8418\left(2.57^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	$8391 @ 1^{\prime} 51 / 2^{\prime \prime}$	22736	Passed (37\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Moment (Ft-lbs)	$31751 @ 41^{\prime \prime}$	65188	Passed (49\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Live Load Defl. (in)	$-0.320 @ 66^{\prime} 31 / 2^{\prime \prime}$	0.334	Passed (L/501)	--	$0.6 \mathrm{D}-0.7 \mathrm{E}$ (All Spans)
Total Load Defl. (in)	$0.330 @ 6^{\prime} 311 / 6^{\prime \prime}$	0.668	Passed (L/486)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	2.57"	237	$\begin{gathered} 11686 /- \\ 11686 \end{gathered}$	$\begin{gathered} 11923 /- \\ 11686 \end{gathered}$	See note ${ }^{1}$
2-Column - SPF	3.50"	2.25 "	1.50 "	188	4634/-4634	$\begin{gathered} 4822 /- \\ 4634 \end{gathered}$	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 55^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 5 \mathrm{\prime} \circ / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGU5.50-SDS H=13.938	$5.25 "$	N/A	$36-$ SDS 25212	$24-$ SDS 25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Seismic $(\mathbf{1 . 6 0})$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $13^{\prime} 81 / 2^{\prime \prime}$	N / A	23.0	--	
1 - Point (Ib)	$4^{\prime} 1^{\prime \prime}$ (Front)	N / A	117	16320	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator

Main Level, B19 Family Room: Transfer Beam 4

1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL
An excessive uplift of -2879 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -2624 lbs at support located at $8^{\prime} 7^{\prime \prime}$ failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3178 @ 3 1/2"	4922 (1.50")	Passed (65\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	3151 @ 1'51/2"	22736	Passed (14\%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	12398 @ 4' 3"	65188	Passed (19\%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	-0.061 @ 4' 3"	0.207	Passed (L/999+)	--	0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	0.064 @ 4' 3"	0.415	Passed (L/999+)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	187	4273/-4273	$\begin{gathered} 4460 /- \\ 4273 \end{gathered}$	See note ${ }^{1}$
2-Stud wall - SPF	3.50"	2.25 "	1.50"	180	3903/-3903	$\begin{gathered} 4083 /- \\ 3903 \end{gathered}$	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 4^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 44^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.50/10	4.00	N/A	$46-10 \mathrm{~d}$	$16-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Seismic $(\mathbf{1 . 6 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $8^{\prime} 73 / 4^{\prime \prime}$	N / A	23.0	--	
1 - Point (Ib)	$4^{\prime} 3^{\prime \prime}$ (Front)	N / A	175	8176	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator

Main Level, B20 Living Room: Drop Beam
1 piece(s) 3 1/2" x 16" 2.2E Parallam® ${ }^{\circledR}$ PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2750 @ 2 "$	$5206(3.50 ")$	Passed (53\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1584 @ 11^{\prime} 71 / 2^{\prime \prime}$	10827	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$4823 @ 3^{\prime} 10^{\prime \prime}$	34955	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.015 @ 3^{\prime} 10 "$	0.244	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.027 @ 3^{\prime} 10^{\prime \prime}$	0.367	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Total	Accessories	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.85^{\prime \prime}$	1217	1533	2750	Blocking
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.85^{\prime \prime}$	1217	1533	2750	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 8{ }^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$7^{\prime} 88^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to $7^{\prime} 8^{\prime \prime}$	N/A	17.5	--	
1 - Uniform (PSF)	0 to $7^{\prime} 8^{\prime \prime}$ (Front)	10^{\prime}	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Post Height: 9' 6"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (43\%)	--	--
Compression (lbs)	23195	55282	Passed (42\%)	1.60	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Base Bearing (lbs)	23195	23336	Passed (99\%)	--	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	N/A	1	Passed (N/A)	--	N / A

- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Type	Material
Base	Plate	Parallam ${ }^{\circledR}$ PSL

Member Type : Free Standing Post
Building Code : IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
Full Member Length	No bracing assumed.

Drawing is Conceptual

Vertical Load	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Seismic $\mathbf{(1 . 6 0)}$	Comments
1 - Point (lb)	5751	5572	5751	17050	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

1 piece(s) 14" TJI® 360 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on 14" PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - ${ }^{2}$	300	400	700	See note ${ }^{1}$
2 - Hanger on 14" PSL beam	3.50 "	Hanger ${ }^{1}$	1.75" / - 2	300	400	700	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 8^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$19^{\prime} 5 \mathrm{\prime} \circ / \mathrm{C}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS2.37/14	$2.000^{\prime \prime}$	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.37/14	2.00	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to 20^{\prime}	$12^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$885 @ 31 / 2^{\prime \prime}$	$1265\left(1.75{ }^{\prime \prime}\right)$	Passed (70\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$885 @ 31 / 2^{\prime \prime}$	2050	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Momember (Ft-lbs)	$4351 @ 10^{\prime} 11 / 2^{\prime \prime}$	9500	Passed (46\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.373 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.492	Passed (L/632)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Desal Load Defl. (in)	$0.539 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.983	Passed (L/438)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	51	50	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	304	607	304	1215	See note ${ }^{1}$
2 - Hanger on $117 / 8$ " PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	304	607	304	1215	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 2 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$19^{\prime} 88^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS3.56/11.88	2.00	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 3.56 / 11.88$	$2.00^{\prime \prime}$	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $20^{\prime} 3 \prime$	$12^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$610 @ 31 / 2^{\prime \prime}$	$910\left(1.75^{\prime \prime}\right)$	Passed (67\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$610 @ 31 / 2^{\prime \prime}$	1560	Passed (39\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1550 @ 5^{\prime} 41 / 2^{\prime \prime}$	3160	Passed (49\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.085 @ 5^{\prime} 41 / 2^{\prime \prime}$	0.254	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.123 @ 5^{\prime} 41 / 2^{\prime \prime}$	0.508	Passed (L/990)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Proist ${ }^{\text {TM }}$ Rating	60	50	Passed	Residential	
Design Methodology : ASD					

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	215	430	215	860	See note ${ }^{1}$
2 - Hanger on $117 / 8$ " PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	215	430	215	860	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 2 \mathrm{o} \circ \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS1.81/11.88	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 1.81 / 11.88$	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $10^{\prime} 9 "$	$16 "$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$376 @ 31 / 2^{\prime \prime}$	$1047\left(1.75^{\prime \prime}\right)$	Passed (36\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$376 @ 31 / 2^{\prime \prime}$	1794	Passed (21\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Momember Type : Joist					
Memilding Use : Residential					
Building Code $:$ IBC 2018					
Build					
Live Load Defl. (in)	$1007 @ 5^{\prime} 77 / 8^{\prime \prime}$	3634	Passed (28\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.057 @ 5^{\prime} 77 / 8^{\prime \prime}$	0.268	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Prothodology : ASD					

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	113	151	226	490	See note ${ }^{1}$
2 - Hanger on $117 / 8$ " PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	113	151	226	490	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 9{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS1.81/11.88	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 1.81 / 11.88$	$2.00^{\prime \prime}$	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $11^{\prime} 33 / 4^{\prime \prime}$	$16 "$	15.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$735 @ 31 / 2^{\prime \prime}$	$1060\left(1.75{ }^{\prime \prime}\right)$	Passed (69\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$735 @ 31 / 2^{\prime \prime}$	1655	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Momember Type : Joist					
Livt-lbs)	$3001 @ 8^{\prime} 51 / 2^{\prime \prime}$	4215	Passed (71\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Design Methodology : ASD					
Total Load Defl. (in)	$0.306 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.408	Passed (L/641)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	$0.442 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.817	Passed (L/444)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32^{\prime \prime}$ Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ -Pro ${ }^{\text {TM }}$ Rating include: bridging or blocking at max. 8' o.c..

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	254	507	254	1015	See note ${ }^{1}$
2 - Hanger on 11 7/8" PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	254	507	254	1015	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 8 \mathrm{~g} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 4 \mathrm{\prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS2.37/11.88	2.00	N/A	$10-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 2.37 / 11.88$	2.00	N/A	$10-10 \mathrm{dx} 1.5$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 11^{\prime \prime}$	$12 "$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

1 piece(s) 9 1/2" TJI © 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$264 @ 31 / 2^{\prime \prime}$	$910(1.75 ")$	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$264 @ 31 / 2^{\prime \prime}$	1220	Passed (22\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$375 @ 3^{\prime} 11 / 2^{\prime \prime}$	2500	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.011 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Total Load Defl. (in)	$0.019 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.283	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	67	50	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $91 / 2^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	125	167	292	See note ${ }^{1}$
2 - Hanger on $91 / 2^{\prime \prime}$ PSL beam	3.50 "	Hanger ${ }^{1}$	1.75" / - 2	125	167	292	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 88^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 8 " \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS1.81/9.5	$2.00^{\prime \prime}$	N/A	8 -10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS1.81/9.5	$2.00^{\prime \prime}$	N/A	8 -10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$96 @ 31 / 2^{\prime \prime}$	$1047\left(1.75^{\prime \prime}\right)$	Passed (9\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$96 @ 31 / 2^{\prime \prime}$	1794	Passed (5\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Momember Type : Joist					
Muilding Use : Residential					
Building Code : IBC 2018					
Live Load Defl. (in)	$34 @ 1$	3634	Passed (1\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.000 @ 31 / 2^{\prime \prime}$	0.035	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Proth ${ }^{\text {TM }}$ Rating	$0.000 @ 31 / 2^{\prime \prime}$	0.071	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: bridging or blocking at max. 8' o.c.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	60	40	60	160	See note ${ }^{1}$
2 - Hanger on $117 / 8$ " PSL beam	3.50"	Hanger ${ }^{1}$	1.75" / - 2	60	40	60	160	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$1^{\prime} 5^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$1^{\prime} 5 " \circ / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/11.88	2.001	$\mathrm{~N} / \mathrm{A}$	$10-10 \mathrm{~d} \times 1.5$	2 -Strong-Grip	
2 - Face Mount Hanger	IUS1.81/11.88	$2.000^{\prime \prime}$	N / A	$10-10 \mathrm{dx1.5}$	2 -Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to 2^{\prime}	$24^{\prime \prime}$	30.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Level, B4 Upper Level Shower: Short Flush Beam (14" PSL)

1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1552 @ 2 "$	$3347\left(2.255^{\prime \prime}\right)$	Passed (46\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$591 @ 1^{\prime} 51 / 2^{\prime \prime}$	9473	Passed (6\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1602 @ 2^{\prime} 31 / 2^{\prime \prime}$	27162	Passed (6\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.004 @ 22^{\prime} 31 / 2^{\prime \prime}$	0.106	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.006 @ 2^{\prime} 31 / 2^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Total	Accessories	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	715	909	1624	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	715	909	1624	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 5^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$4^{\prime} 5^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $4^{\prime} 53 / 4^{\prime \prime}$	N / A	15.3	--	
1 - Uniform (PSF)	0 to $4^{\prime} 7^{\prime \prime}$ (Front)	$9^{\prime} 11^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Upper Level, B4 Upper Level Shower: Long Flush Beam (14" PSL)

1 piece(s) 3 1/ 2" x 14" 2.2E Parallam ${ }^{\circledR}$ PSL

Overall Length: $20^{\prime} 21 / 4^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1281 @ 2 "$	$3347(2.25 ")$	Passed (38\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1260 @ 11^{\prime} 51 / 2^{\prime \prime}$	9473	Passed (13\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$7479 @ 6^{\prime} 23 / 4^{\prime \prime}$	27162	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.125 @ 9^{\prime} 15 / 8^{\prime \prime}$	0.496	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.254 @ 9^{\prime} 3^{\prime \prime}$	0.993	Passed (L/938)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	650	631	1281	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	371	278	649	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$20^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $20^{\prime} 1 "$	N/A	15.3	--	
1 - Point (Ib)	$6^{\prime} 23 / 4^{\prime \prime}$ (Front)	N/A	715	909	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1538 @ 2"	3347 (2.25")	Passed (46\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	786 @ 1' 5 1/2"	9473	Passed (8\%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2035 @ 2' 10 1/2"	27162	Passed (7\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.006 @ 2' 10 1/2"	0.135	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 2' 10 1/2"	0.271	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Total	Accessories	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	707	886	1593	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	707	886	1593	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 7 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 7 " \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $5^{\prime} 73 / 4^{\prime \prime}$	N / A	15.3	--	
1 - Uniform (PSF)	0 to $5^{\prime} 9^{\prime \prime}$ (Front)	$7^{\prime} 81 / 2^{\prime \prime}$	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2776 @ 31 / 2^{\prime \prime}$	$3281\left(1.500^{\prime \prime}\right)$	Passed (85\%)	--	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1764 @ 1^{\prime} 51 / 2^{\prime \prime}$	15157	Passed (12\%)	1.60	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2011 @ 11^{\prime} 91 / 2^{\prime \prime}$	27162	Passed (7\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.007 @ 11^{\prime} 91 / 2^{\prime \prime}$	0.100	Passed (L/999+)	--	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.009 @ 1 ' 91 / 2^{\prime \prime}$	0.150	Passed (L/999+)	--	$1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Allowed moment does not reflect the adjustment for the beam stability factor.
- - 649 lbs uplift at support located at $31 / 2^{\prime \prime}$. Strapping or other restraint may be required.
- -649 lbs uplift at support located at $3^{\prime} 31 / 2^{\prime \prime}$. Strapping or other restraint may be required.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	1060	1334	1837/-1837	$\begin{gathered} 4231 /- \\ 1837 \end{gathered}$	See note ${ }^{1}$
2 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	1060	1334	1837/-1837	$\begin{gathered} 4231 /- \\ 1837 \end{gathered}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3 o/c	
Bottom Edge (Lu)	3 ' o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
Support	Hace Mount Hanger	HHUS410	$3.000^{\prime \prime}$	N/A	$30-10 \mathrm{~d}$	$10-10 \mathrm{~d}$
2 - Face Mount Hanger	HHUS410	3.00	N/A	$30-10 \mathrm{~d}$	$10-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Seismic (1.60)
C Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $3^{\prime} 31 / 2^{\prime \prime}$	N/A	15.3	--	--
1-Point (lb)	$1^{\prime} 91 / 2^{\prime \prime}$ (Front)	N/A	612	546	3673
2 - Uniform (PSF)	0 to $3^{\prime \prime} 7^{\prime \prime}$ (Front)	$2^{\prime} 43 / 4^{\prime \prime}$	30.0	60.0	-
3 - Uniform (PSF)	0 to $3^{\prime} 7^{\prime \prime}$ (Front)	$11^{\prime} 21 / 2^{\prime \prime}$	30.0	40.0	-

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

2 piece(s) 2×10 Spruce-Pine-Fir No. $1 /$ No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$59 @ 2 "$	$2869\left(2.25^{\prime \prime}\right)$	Passed (2\%)	--	1.0 D (All Spans)
Shear (lbs)	$33 @ 1 ' 3 / 4^{\prime \prime}$	2248	Passed (1\%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	$61 @ 2^{\prime} 31 / 2^{\prime \prime}$	3088	Passed (2\%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	$0.000 @ 11 / 4^{\prime \prime}$	0.106	Passed (L/999+)	--	1.0 D (All Spans)
Total Load Defl. (in)	$0.001 @ 22^{\prime} 31 / 2^{\prime \prime}$	0.213	Passed (L/999+)	--	1.0 D (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)		
	Total	Available	Required	Dead	Total	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	61	61	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	61	61	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $4^{\prime} 53 / 4^{\prime \prime}$	N/A	7.0	
1 - Uniform (PLF)	0 to $4^{\prime} 7^{\prime \prime}$ (Front)	N/A	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3679 @ 2 "$	$5020\left(2.25^{\prime \prime}\right)$	Passed (73\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$2718 @ 1^{\prime} 51 / 2^{\prime \prime}$	14210	Passed (19\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$9313 @ 5^{\prime} 31 / 2^{\prime \prime}$	40743	Passed (23\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.044 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.256	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.080 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.512	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Total	Accessories	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.65^{\prime \prime}$	1675	2075	3750	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.65^{\prime \prime}$	1675	2075	3750	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10'5" o/c	
Bottom Edge (Lu)	10'5" o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $10^{\prime} 53 / 4^{\prime \prime}$	N / A	23.0	--	
1 - Uniform (PSF)	0 to $10^{\prime} 7{ }^{\prime \prime}$ (Front)	$9 ' 95 / 8^{\prime \prime}$	30.0	40.0	Default Load
2 - Uniform (PLF)	0 (Front)	N / A	20.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7224 @ 3 1/2"	7224 (2.20")	Passed (100\%)	--	$\begin{aligned} & 1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(\mathrm{All} \\ & \text { Spans) } \end{aligned}$
Shear (lbs)	3959 @ 1' 5 1/2"	14210	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	15152 @ 6' $61 / 8{ }^{\prime \prime}$	40743	Passed (37\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.102 @ 6' $61 / 8{ }^{\prime \prime}$	0.311	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.181 @ 6' 6 1/8"	0.622	Passed (L/823)	--	1.0 D + 1.0 L (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)					Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	2.20 "	2214	2881	179	5545/-5545	$\begin{gathered} 10819 /- \\ 5545 \end{gathered}$	See note ${ }^{1}$
2-Stud wall - SPF	3.50"	2.25 "	2.21"	2176	2826	176	85/-85	$\begin{gathered} 5263 /- \\ 85 \end{gathered}$	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 6 " 0 / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 6 \mathrm{\prime} \mathrm{\prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Seismic $(\mathbf{1 . 6 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $12^{\prime} 91 / 2^{\prime \prime}$	N / A	23.0	--	--	--	
1 - Uniform (PSF)	0 to $12^{\prime} 103 / 4^{\prime \prime}$ (Front)	$9^{\prime} 81 / 4^{\prime \prime}$	30.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to $12^{\prime} 103 / 4^{\prime \prime}$ (Front)	$11^{\prime \prime}$	30.0	60.0	30.0	-	
3 - Point (Ib)	$53 / 4^{\prime \prime}$ (Front)	N / A	-	-	-	5630	

ForteWEB Software Operator
Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

Upper Level, B12 Upper Level: Transfer Beam 2 (14" PSL)

1 piece(s) 5 1/4" x 14" 2.2E Parallam® ${ }^{\circledR}$ PSL
An excessive uplift of -1851 Ibs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -5976 lbs at support located at $19{ }^{\prime} 8$ " failed this product.

SUPPORTS HAVE SUFFICIENT UPLIFT CAPACITY

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6332 @ 19' 8"	$6332\left(1.93{ }^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	$6305 @ 18^{\prime} 6^{\prime \prime}$	22736	Passed (28\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Moment (Ft-lbs)	$24666 @ 12^{\prime} 21 / 2^{\prime \prime}$	65188	Passed (38\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Live Load Defl. (in)	$-0.531 @ 10^{\prime} 95 / 16^{\prime \prime}$	0.646	Passed (L/438)	--	$0.6 \mathrm{D}-0.7 \mathrm{E}$ (All Spans)
Total Load Defl. (in)	$0.560 @ 10^{\prime} 87 / 8^{\prime \prime}$	0.969	Passed (L/416)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	223	2835/-2835	$\begin{gathered} 3058 /- \\ 2835 \end{gathered}$	See note ${ }^{1}$
2 - Hanger on 14" SPF beam	4.50"	Hanger ${ }^{1}$	1.93"	223	8727/-8727	$\begin{gathered} \hline 8950 /- \\ 8727 \end{gathered}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$19^{\prime} 55^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$19^{\prime} 5 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS5.50/10	$3.00 "$	N/A	$30-10 \mathrm{~d}$	$10-10 \mathrm{~d}$	
2 - Face Mount Hanger	MGU5.50-SDS H $=13.938$	4.50	N/A	$24-$ SDS 25212	$16-$ SDS 25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Seismic $(\mathbf{1 . 6 0)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $19^{\prime} 8^{\prime \prime}$	N/A	23.0	--	
1 - Point (Ib)	$12^{\prime} 21 / 2^{\prime \prime}$ (Front)	N/A	-	5781	Default Load
2 - Point (Ib)	$17^{\prime} 71 / 2^{\prime \prime}$ (Front)	N/A	-	5781	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

1 piece(s) 5 1/4" x 14" 2.2E Parallam® ${ }^{\circledR}$ PSL
An excessive uplift of -2203 lbs at support located at $31 / 2^{\prime \prime}$ failed this product. An excessive uplift of -4077 lbs at support located at $17^{\prime} 11$ " failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5044 @ 17^{\prime} 11^{\prime \prime}$	$5044(1.54 ")$	Passed (100\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	$4964 @ 16^{\prime} 9 "$	22736	Passed (22\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Moment (Ft-lbs)	$31157 @ 11^{\prime} 51 / 2^{\prime \prime}$	65188	Passed (48\%)	1.60	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Live Load Defl. (in)	$-0.510 @ 99^{\prime} 9{ }^{\prime \prime}$	0.587	Passed (L/414)	--	$0.6 \mathrm{D}-0.7 \mathrm{E}$ (All Spans)
Total Load Defl. (in)	$0.570 @ 9 ' 83 / 16^{\prime \prime}$	0.881	Passed (L/371)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Seismic	Total	
1 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	612	546	3672/-3672	$\begin{gathered} \hline 4830 /- \\ 3672 \end{gathered}$	See note ${ }^{1}$
2 - Hanger on 14" SPF beam	3.50"	Hanger ${ }^{1}$	1.54"	612	546	6350/-6350	$\begin{gathered} \hline 7508 /- \\ 6350 \end{gathered}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 8$ " $0 / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 8 \mathrm{o} \circ \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS5.50/10	$3.00 "$	N/A	$30-10 \mathrm{~d}$	$10-10 \mathrm{~d}$	
2 - Face Mount Hanger	HGUS5.50/10	$4.00 "$	N/A	$46-16 \mathrm{~d}$	$16-16 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $17^{\prime} 11^{\prime \prime}$	N/A	23.0	--	--	
1 - Point (Ib)	$11^{\prime} 51 / 2^{\prime \prime}($ Front)	N/A	-	-	10022	Default Load
2 - Uniform (PSF)	0 to $18^{\prime} 21 / 2^{\prime \prime}($ Front)	$1^{\prime} 6 "$	30.0	40.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	1234 @ $31 / 2^{\prime \prime}$	3938 (1.50")	Passed (31\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	1102 @ 1' 3 3/8"	9081	Passed (12\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	5718 @ 9'63/4"	20525	Passed (28\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.191 @ 9' 6 3/4"	0.464	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.378 @ 9' 6 3/4"	0.927	Passed (L/588)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	626	343	514	1483	See note ${ }^{1}$
2 - Hanger on 11 7/8" SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	626	343	514	1483	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$18^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$18^{\prime \prime} \mathrm{o} / \mathrm{C}$	

\bullet Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS410	2.00"	N/A	$8-10 \mathrm{dx} 1.5$	6-10d	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $18^{\prime} 10^{\prime \prime}$	N / A	12.1	--	--	
1 - Uniform (PSF)	0 to $19^{\prime} 11 / 2^{\prime \prime}$ (Front)	$1^{\prime} 91 / 2^{\prime \prime}$	30.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
J ob Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	3488 @ 3 1/2"	3938 (1.50")	Passed (89\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	2913 @ 1'3 3/8"	9081	Passed (32\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	10464 @ 6' 3 1/2"	20525	Passed (51\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.174 @ 6' 3 1/2"	0.300	Passed (L/828)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.307 @ 6' 3 1/2"	0.600	Passed (L/470)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	1579	1261	1506	4346	See note ${ }^{1}$
2 - Hanger on $117 / 8{ }^{\text {" SPF beam }}$	3.50"	Hanger ${ }^{1}$	1.50"	1579	1261	1506	4346	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS48	3.00	N/A	$22-16 \mathrm{~d}$		
2 - Face Mount Hanger	HHUS48	$3.00^{\prime \prime}$	N/A	$22-16 \mathrm{~d}$	$8-16 \mathrm{~d}$	$8-16 \mathrm{~d}$

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $12^{\prime} 31 / 2^{\prime \prime}$	N / A	12.1	--	--	
1 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	$6^{\prime} 111 / 2^{\prime \prime}$	30.0	20.0	30.0	
2 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	$1^{\prime} 1 / 4^{\prime \prime}$	30.0	60.0	30.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	828 @ $31 / 2^{\prime \prime}$	3938 (1.50")	Passed (21\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Shear (lbs)	775 @ 1'3 3/8"	9081	Passed (9\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	6475 @ 15' 11 1/4"	20525	Passed (32\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.508 @ 15' $111 / 4{ }^{\prime \prime}$	0.782	Passed (L/739)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	1.186 @ 15' 11 1/4"	1.565	Passed (L/317)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8^{\prime \prime}$ SPF beam	3.50 "	Hanger ${ }^{1}$	1.50 "	479	193	289	961	See note ${ }^{1}$
2 - Hanger on 11 7/8" SPF beam	3.50 "	Hanger ${ }^{1}$	1.50 "	479	193	289	961	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$23^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$31^{\prime} 4 \mathrm{~L}^{\circ} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS410	2.00"	N/A	$8-10 \mathrm{dx} 1.5$	6-10d	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $31^{\prime} 7 "$	$\mathrm{~N} / \mathrm{A}$	12.1	--	--	
1 - Uniform (PSF)	0 to $31^{\prime} 101 / 2^{\prime \prime}$ (Front)	$71 / 4^{\prime \prime}$	30.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2001 @ 31 / 2^{\prime \prime}$	$3938(1.50 ")$	Passed (51\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1688 @ 11^{\prime} 33 / 8^{\prime \prime}$	9081	Passed (19\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Member Type : Flush Beam					
Building Use : Residential					
Building Code : IBC 2018					
Design Methodology : ASD					
Live Load Defl. (in)	$6335 @ 6^{\prime} 71 / 2^{\prime \prime}$	20525	Passed (31\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.109 @ 6^{\prime} 71 / 2^{\prime \prime}$	0.317	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1- Hanger on $117 / 8$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50 "	971	596	894	2461	See note ${ }^{1}$
2 - Hanger on $117 / 8$ SPF beam	3.50"	Hanger ${ }^{1}$	1.50"	971	596	894	2461	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 8 \mathrm{~g} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 8 \mathrm{o} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS414	$2.000^{\prime \prime}$	N/A	$10-16 \mathrm{~d}$		
2 - Face Mount Hanger	LUS414	2.00	N/A	$10-16 \mathrm{~d}$		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
$0-$ Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $12^{\prime} 111 / 2^{\prime \prime}$	N / A	12.1	--	--	
1 - Uniform (PSF)	0 to $13^{\prime} 3^{\prime \prime}$ (Front)	$4^{\prime} 6^{\prime \prime}$	30.0	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Level, B14 Upper Deck: Long Flush Beam (11-7/8" PSL)
1 piece(s) 7" x 11 7/ 8" 2.2E Parallam® ${ }^{\circledR}$ PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4276 @ 20' $101 / 2^{\prime \prime}$	$6694(2.25 ")$	Passed (64\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4015 @ 19^{\prime} 91 / 8^{\prime \prime}$	18481	Passed (22\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$22892 @ 10^{\prime} 85 / 16^{\prime \prime}$	45776	Passed (50\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.494 @ 10^{\prime} 71 / 4^{\prime \prime}$	0.518	Passed (L/503)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.847 @ 10 ' 613 / 16^{\prime \prime}$	1.035	Passed (L/293)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Stud wall - SPF	$3.50{ }^{\prime \prime}$	2.25"	1.50 "	1864	1550	1593	5007	1 1/4" Rim Board
2 - Stud wall - SPF	3.50 "	2.25"	1.50 "	1756	1875	1485	5116	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$20^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2434 @ 2 "$	$3347(2.25 ")$	Passed (73\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1207 @ 1^{\prime} 33 / 8^{\prime \prime}$	8035	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2719 @ 2^{\prime} 73 / 4^{\prime \prime}$	19902	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.013 @ 2^{\prime} 73 / 4^{\prime \prime}$	0.124	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.020 @ 2^{\prime} 73 / 4^{\prime \prime}$	0.248	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Stud wall - SPF	3.50"	2.25"	1.64"	802	1538	769	3109	1 1/4" Rim Board
2-Stud wall - SPF	3.50 "	2.25"	1.64 "	802	1538	769	3109	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 1 "$ " o/c	
Bottom Edge (Lu)	$5^{\prime} 1 "$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $5^{\prime} 21 / 4^{\prime \prime}$	N / A	13.0	--	--	
1 - Uniform (PSF)	0 to $5^{\prime} 31 / 2^{\prime \prime}$ (Front)	$9^{\prime} 81 / 4^{\prime \prime}$	30.0	60.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brian Wu	
Fast + Epp	
(347) 435-2377	
bwu@fastepp.com	

2.2 STEEL FRAMING DESIGN

Fast + Epp

PROJECT: Yaroslavsky Residence
PROJECT NUMBER: 8119

SUBJECT: Perimeter Beam Loading
DATE:
2021-03-02
DESIGN BY: BJW

GEOMETRY:

Tributary width
Beam length
Beam length

$\mathrm{w}_{\mathrm{T}}=$	2.48
L1 =	27.79
L2 =	11.67

SURFACE LOADS:

Dead load
Superimposed dead load
Live load
Snow load

DL $=$	0
SDL $=$	30
LL =	60
SL =	30

LINE LOADS:

Dead load	DL	$=$	0	plf	$\mathbf{0 . 0 0}$
klf					
Superimposed dead load	SDL	$=74.375$	plf	0.07	klf
Live load	LL	$=148.750$	plf	0.15	klf
Snow load	SL	$=74.375$	plf	0.07	klf

PROJECT: Yaroslavsky Residence
PROJECT NUMBER: 8119

SUBJECT: Perimeter Beam Loading
DESIGN BY: BJW

DATE: 2021-03-02

NOTES: Main level south perimeter beam (B4) point load on B8

GEOMETRY:

Tributary width
Beam overhang

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

$\mathrm{DL}=$	0	plf
$\mathrm{SDL}=$	167.5	plf
$\mathrm{LL}=$	223.333	plf
$\mathrm{SL}=$	167.500	plf

0.00 klf
0.17 klf
0.22 klf
0.17 klf

REACTIONS:

	RDL	$=$	$\mathbf{0 . 0 0}$
Overhang reaction			
RSDL	$=$	$\mathbf{1 . 7 3}$	kips
	RLL	$=$	2.30
kips			
RSL	$=$	1.73	kips

PROJECT: Yaroslavsky Residence
PROJECT NUMBER: 8119

SUBJECT: Perimeter Beam Loading
DESIGN BY: BJW

DATE: 2021-03-02

NOTES: Upper level deck west perimeter beam (B8)

GEOMETRY:

Tributary width
Beam length
Beam length

	$\mathrm{W}_{\mathrm{T}}=$
L 1	$=2.67$
ft	
L 2	$=27.79$
ft	
	12.40
ft	

SURFACE LOADS:

Dead load
Superimposed dead load
Live load
Snow load

DL =	0
SDL $=$	30
LL =	20
SL =	30

LINE LOADS:

Dead load	DL	$=$	0	plf	0.00
klf					
Superimposed dead load	SDL	$=$	80	plf	0.08
Live load	$L L$	53.333	plf	0.05	klf
Snow load	SL	$=80.000$	plf	0.08	klf

REACTIONS:

Girder reaction	RDL	$=$	$\mathbf{0 . 0 0}$
kips			
RSDL	$=$	$\mathbf{1 . 1 1}$	kips
RLL	$=$	0.74	kips
RSL	$=$	1.11	kips

PROJECT: Yaroslavsky Residence
PROJECT NUMBER: 8119
SUBJECT: Perimeter Beam Loading
DESIGN BY: BJW

DATE: 2021-03-02

NOTES: Upper level south perimeter beam (B4) point load on B8

GEOMETRY:

Tributary width
Beam overhang

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

DL =	0
SDL $=$	30
LL =	40
SL $=$	30

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

$\mathrm{DL}=$	$\mathbf{0}$	plf
$\mathrm{SDL}=$	$\mathbf{5 7}$	plf
$\mathrm{LL}=$	$\mathbf{7 6 . 0 0 0}$	plf
$\mathrm{SL}=$	$\mathbf{5 7 . 0 0 0}$	plf

0.00	klf
0.06	klf
0.08	klf
0.06	klf

REACTIONS:

$$
\text { RDL }=0.00 \quad \text { kips }
$$

Overhang reaction

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Main Level West Perimeter Beam (B8)				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (AISC360-16)

In accordance with AISC360-16 using the ASD method

Support conditions

Support A

Support B

Support C

Applied loading

Beam loads

Vertically free

Rotationally free
Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead self weight of beam * 1
Dead full UDL $0.11 \mathrm{kips} / \mathrm{ft}$
Live full UDL $0.15 \mathrm{kips} / \mathrm{ft}$
Snow full UDL 0.06 kips/ft
Dead point load 1.73 kips at 0.00 in
Live point load 2.3 kips at 0.00 in
Snow point load 1.73 kips at 0.00 in

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Main Level West Perimeter Beam (B8)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Load combinations

Load combination 1

Support A	Dead * 1.00
	Live * 1.00
	Roof live * 1.00
	Snow * 1.00
	Dead * 1.00
	Live * 1.00
	Roof live * 1.00
	Snow * 1.00
Support B	Dead * 1.00
	Live * 1.00
	Roof live * 1.00
	Snow * 1.00
	Dead * 1.00
	Live * 1.00
	Roof live * 1.00
	Snow * 1.00
Support C	Dead * 1.00
	Live * 1.00
	Roof live * 1.00
	Snow * 1.00

Analysis results

Maximum moment
Maximum moment span 1
Maximum moment span 2
Maximum shear
Maximum shear span 1
Maximum shear span 2
Deflection
Deflection span 1
Deflection span 2
Maximum reaction at support A
Maximum reaction at support B
Unfactored dead load reaction at support B
Unfactored live load reaction at support B
Unfactored snow load reaction at support B
Maximum reaction at support C
Unfactored dead load reaction at support C
Unfactored live load reaction at support C
Unfactored snow load reaction at support C
$\mathrm{M}_{\max }=4.6$ kips_ft
Ms1_max $=0$ kips_ft
Ms2_max $=4.6$ kips_ft
$V_{\text {max }}=8.5 \mathrm{kips}$
$V_{\text {s1_max }}=-5.8 \mathrm{kips}$
$V_{\text {s2_max }}=8.5 \mathrm{kips}$
$\delta_{\max }=0.6$ in
δ s1_max $=\mathbf{0 . 6}$ in
$\delta_{\text {s2_max }}=\mathbf{0}$ in
$R_{\text {A_max }}=\mathbf{0}$ kips
Rв_max $=18.6$ kips
Rb_Dead $=7$ kips
Rв_Live $=7.5 \mathrm{kips}$
Rb_Snow = 4.1 kips
Rc_max $=1.9$ kips
Rc_min $=1.9$ kips
$M_{\text {min }}=\mathbf{- 9 2 . 6}$ kips_ft
Ms1_min = -92.6 kips_ft
Ms2_min = -92.6 kips_ft
$V_{\text {min }}=-10.1 \mathrm{kips}$
$V_{\text {s1_min }}=\mathbf{- 1 0 . 1} \mathrm{kips}$
$V_{\text {s2_min }}=-1.9 \mathrm{kips}$
$\delta_{\text {min }}=0.1$ in
$\delta_{\text {s1_min }}=\mathbf{0}$ in
$\delta_{\text {s2 } 2 \text { min }}=\mathbf{0 . 1}$ in
RA_min $=0$ kips
$R_{\mathrm{B} _ \text {min }}=\mathbf{1 8 . 6}$ kips

Section details

Section type
ASTM steel designation
Steel yield stress
Rc_Dead $=1.1$ kips
Rc_Live $=0.8 \mathrm{kips}$
Rc_snow $=\mathbf{0}$ kips

Steel tensile stress
W 12x53 (AISC 15th Edn (v15.0))
A992
$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Main Level West Perimeter Beam (B8)				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Modulus of elasticity

Safety factors

Safety factor for tensile yielding
$\Omega_{\text {ty }}=1.67$
Safety factor for tensile rupture
$\Omega_{t r}=2.00$
Safety factor for compression
$\Omega_{\mathrm{c}}=1.67$
Safety factor for flexure
$\Omega \mathrm{b}=1.67$

Lateral bracing

Span 1 has continuous lateral bracing
Span 2 has continuous lateral bracing
Cantilever tip is unbraced
Cantilever support is continuous with lateral and torsional restraint

Classification of sections for local buckling - Section B4.1

Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
$\mathrm{b}_{\mathrm{f}} /\left(2^{*} \mathrm{t}_{\mathrm{f}}\right)=8.70$
$\lambda_{\text {pff }}=0.38 * \sqrt{ }[E / F y]=9.15$
$\lambda_{\mathrm{rff}}=1.0 * \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=24.08 \quad$ Compact

Widh to thickness ratio

Design of members for shear - Chapter G

Required shear strength
Web area
Web plate buckling coefficient
Web shear coefficient - eq G2-3
Nominal shear strength - eq G6-1
Safety factor for shear
($\mathrm{d}-2^{*} \mathrm{k}$) $/ \mathrm{t}$ w $=28.23$
$\lambda_{\text {pwf }}=3.76 * \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=90.55$
$\left.\lambda_{r w t}=5.70 * \sqrt{[E} / F_{y}\right]=137.27 \quad$ Compact
Section is compact in flexure
$\mathrm{V}_{\mathrm{r}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=\mathbf{1 0 . 1 1 4} \mathrm{kips}$
$\mathrm{A}_{\mathrm{w}}=\mathrm{d}^{*} \mathrm{tw}=4.174 \mathrm{in}^{2}$
$k_{v}=5.34$
$\mathrm{C}_{\mathrm{v} 1}=\mathbf{1}$
$V_{n}=0.6$ * $F_{y}^{*} A_{w}{ }^{*} C_{v 1}=125.235$ kips
$\Omega_{v}=1.50$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Main Level West Perimeter Beam (B8)				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Allowable shear strength

$$
\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{n}} / \Omega_{\mathrm{v}}=83.490 \mathrm{kips}
$$

PASS - Allowable shear strength exceeds required shear strength
Design of members for flexure in the major axis at span 1 - Chapter F

Required flexural strength
Yielding - Section F2.1
Nominal flexural strength for yielding - eq F2-1
Nominal flexural strength
Allowable flexural strength
$\mathrm{Mr}_{\mathrm{r}}=\max \left(\mathrm{abs}\left(\mathrm{Ms}_{\mathrm{s} 1 _\max }\right), \mathrm{abs}\left(\mathrm{Ms}_{\mathrm{s} 1}\right.\right.$ min $\left.)\right)=\mathbf{9 2 . 6 2 4}$ kips_ft
$M_{\text {nyld }}=M_{p}=F_{y}{ }^{*} Z_{x}=324.583$ kips_ft
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{Mnyld}_{\text {n }}=324.583$ kips_ft
$M_{c}=M_{n} / \Omega_{b}=194.361$ kips_ft
PASS - Allowable flexural strength exceeds required flexural strength
Design of members for vertical deflection
Consider deflection due to live loads
Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=2^{*}$ Ls s $/ 360=0.778$ in
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=0.562$ in

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Deck West Perimeter Beam (B8)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (AISC360-16)

In accordance with AISC360-16 using the LRFD method

Support conditions

Support A Vertically restrained
Rotationally free
Support B Vertically restrained
Rotationally free
Support C
Vertically free
Rotationally free

Applied loading

Beam loads
Dead self weight of beam * 1
Dead full UDL 0.08 kips/ft
Live full UDL $0.05 \mathrm{kips} / \mathrm{ft}$
Snow full UDL 0.08 kips/ft
Dead point load 0.59 kips at 482.28 in
Live point load 0.78 kips at 482.28 in
Snow point load 0.59 kips at 482.28 in

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Deck West Perimeter Beam (B8)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Load combinations		
Load combination 1	Support A	Dead * 1.20
		Live * 1.60
		Snow * 0.50
		Dead * 1.20
		Live * 1.60
		Snow * 0.50
	Support B	Dead * 1.20
		Live * 1.60
		Snow * 0.50
		Dead * 1.20
		Live * 1.60
		Roof live * 1.60
		Snow * 1.60
	Support C	Dead * 1.20
		Live * 1.60
		Roof live * 1.60
		Snow * 1.60
Analysis results		
Maximum moment	$\mathrm{M}_{\max }=4.4$ kips_ft	$\mathrm{M}_{\text {min }}=\mathbf{- 6 4 . 2}$ kips_ft
Maximum moment span 1	Ms1_max $=4.4$ kips_ft	$\mathrm{Ms}_{\text {1_min }}=\mathbf{- 6 4 . 2} \mathrm{kips} \mathrm{ft}$
Maximum moment span 2	Ms2_max $=0$ kips_ft	Ms2_min $=\mathbf{- 6 4 . 2} \mathrm{kips}$ _ft
Maximum shear	$V_{\text {max }}=7.5 \mathrm{kips}$	$\mathrm{V}_{\text {min }}=-6.2 \mathrm{kips}$
Maximum shear span 1	$V_{\text {s1_max }}=1.6 \mathrm{kips}$	$\mathrm{V}_{\text {s1_min }}=-6.2 \mathrm{kips}$
Maximum shear span 2	$V_{\text {s2_ }}$ max $=7.5 \mathrm{kips}$	$\mathrm{V}_{\text {s2_min }}=2.9 \mathrm{kips}$
Deflection	$\delta_{\text {max }}=\mathbf{0 . 6}$ in	$\delta_{\text {min }}=\mathbf{0} .1 \mathrm{in}$
Deflection span 1	$\delta_{\text {s1__max }}=\mathbf{0}$ in	$\delta_{\text {s1_min }}=\mathbf{0 . 1}$ in
Deflection span 2	$\delta_{\text {s2_max }}=0.6 \mathrm{in}$	$\delta_{\text {s2_min }}=\mathbf{0}$ in
Maximum reaction at support A	$\mathrm{RA}_{\text {_ max }}=1.6 \mathrm{kips}$	$\mathrm{R}_{\mathrm{A}_{\text {min }}}=1.6 \mathrm{kips}$
Unfactored dead load reaction at support A	$\mathrm{R}_{\text {A_Dead }}=1.2 \mathrm{kips}$	
Unfactored live load reaction at support A	RA_Live $=0.2 \mathrm{kips}$	
Unfactored snow load reaction at support A	$\mathrm{R}_{\text {A_Snow }}=0.6 \mathrm{kips}$	
Maximum reaction at support B	$R_{\text {B_max }}=13.7$ kips	$\mathrm{RB}_{\mathrm{_}} \mathrm{~min}=13.7 \mathrm{kips}$
Unfactored dead load reaction at support B	$\mathrm{RB}_{\text {_ Dead }}=4.7 \mathrm{kips}$	
Unfactored live load reaction at support B	RB_Live $=2.6 \mathrm{kips}$	
Unfactored snow load reaction at support B	RB_Snow $=3.2 \mathrm{kips}$	
Maximum reaction at support C	Rc_max $=0$ kips	Rc_min $=\mathbf{0}$ kips
Section details		
Section type	W 12x53 (AISC 15th	
ASTM steel designation	A992	
Steel yield stress	$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$	
Steel tensile stress	$\mathrm{Fu}_{\mathrm{u}}=65 \mathrm{ksi}$	
Modulus of elasticity	$\mathrm{E}=29000 \mathrm{ksi}$	

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Deck West Perimeter Beam (B8)				Sheet no./rev. 3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Deck West Perimeter Beam (B8)				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

PASS - Design shear strength exceeds required shear strength

Design of members for flexure in the major axis at span 1 - Chapter F

Required flexural strength

$$
\mathrm{Mr}_{\mathrm{r}}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \mathrm{abs}\left(\mathrm{Mss}^{1} \min \right)\right)=\mathbf{6 4 . 2 2 9} \text { kips_ft }
$$

Yielding - Section F2.1

Nominal flexural strength for yielding - eq F2-1 $\quad M_{n y l d}=M_{p}=F_{y}{ }^{*} Z_{x}=324.583$ kips_ft
Nominal flexural strength
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{Mnyld}_{\text {n }}=324.583$ kips_ft
Design flexural strength
$\mathrm{Mc}=\phi \mathrm{b}$ * $\mathrm{Mn}_{\mathrm{n}}=292.125 \mathrm{kips} \mathrm{ft}$
PASS - Design flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, roof live and snow loads

Limiting deflection
Maximum deflection span 2

$$
\begin{aligned}
& \delta_{\text {lim }}=2 * L_{s 2} / 240=1.24 \mathrm{in} \\
& \delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=0.592 \mathrm{in}
\end{aligned}
$$

PASS - Maximum deflection does not exceed deflection limit

PROJECT: Yaroslavsky Residence
SUBJECT: Master Suite Transfer Beam 1
DESIGN BY: BJW

GEOMETRY:

Tributary width
Beam length

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

DL =	0
SDL =	30
LL =	40
SL =	0

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

DL $=$	0	plf
SDL $=$	$\mathbf{2 6 0 . 3 1 3}$	plf
$\mathrm{LL}=$	$\mathbf{3 4 7 . 0 8 3}$	plf
$\mathrm{SL}=$	$\mathbf{0}$	plf

0	klf
0.260	klf
0.347	klf
0	klf

REACTIONS:

Girder reaction	RDL	$=0.00$	kips
RSDL	$=$	$\mathbf{3 . 0 9}$	kips
RLL	$=$	$\mathbf{4 . 1 2}$	kips
RSL	$=$	$\mathbf{0 . 0 0}$	kips

PROJECT: Yaroslavsky Residence
SUBJECT: Master Suite Transfer Beam 1
DESIGN BY: BJW

GEOMETRY:

Tributary width
Beam length

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

Deck	60	Ballast =	20
Distance	16.0	Distance =	7.75

LINE LOADS:

Dead load
Superimposed dead load
Live load
Snow load

REACTIONS:

Girder reaction	RDL $=$	$\mathbf{0 . 0 0}$	kips
RSDL	$=$	$\mathbf{3 . 6 1}$	kips
RLL	$=$	5.64	kips
RSL	$=$	3.61	kips

PROJECT: Yaroslavsky Residence
SUBJECT: Master Suite Transfer Beam 1
DESIGN BY: BJW

PROJECT NUMBER: 8119
DATE: 2021-03-02 2021-03-02

\square

GEOMETRY:

Tributary width
Beam length

W_{T}	$=8.677$
L	$=23.73$
	ft

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

DL $=$	0	plf
SDL $=$	130.156	plf
$L L=$	173.542	plf
SL $=$	216.927	plf

0	klf
0.130	klf
0.174	klf
0.217	klf

REACTIONS:

Girder reaction	RDL	$=0.00$	kips
RSDL	$=$	$\mathbf{1 . 5 4}$	kips
RLL	$=$	2.06	kips
RSL	$=$	2.57	kips

	Line Load Total	
SDL	0.695	klf
LL	0.823	klf
RL	0.174	klf
SL	0.521	klf

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 1 (B9)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (AISC360-16)

In accordance with AISC360-16 using the ASD method

Load Envelope - Combination 4

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 1 (B9)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Support conditions

Support A	Vertically restrained
Support B	Rotationally free
	Vertically restrained
	Rotationally free

Applied loading

Beam loads	Dead self weight of beam * 1	
	Dead full UDL 0.695 kips/ft	
	Live full UDL $0.823 \mathrm{kips} / \mathrm{ft}$	
	Roof live full UDL $0.174 \mathrm{kips} / \mathrm{ft}$	
	Snow full UDL $0.521 \mathrm{kips} / \mathrm{ft}$	
	Seismic point load 5.802 kips at 223.00 in	
	Seismic point load 10.022 kips at 236.75 in	
Load combinations		
Load combination 1 - D+0.75L+0.75Lr	Support A	Dead * 1.00
		Live * 0.75
		Roof live * 0.75
		Dead* 1.00
		Live * 0.75
		Roof live * 0.75
	Support B	Dead* 1.00
		Live * 0.75
		Roof live * 0.75
Load combination 2 - D+0.75L+0.75S	Support A	Dead* 1.00
		Live * 0.75
		Snow * 0.75

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Transfer Beam 1 (B9)				Sheet no./rev. 3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Load combination $3-\mathrm{D}+0.75 \mathrm{~L}+0.525 \mathrm{E}+0.75 \mathrm{~S}$	Support B	Dead * 1.00
		Live * 0.75
		Snow * 0.75
		Dead* 1.00
		Live * 0.75
		Snow * 0.75
	Support A	Dead* 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
		Dead * 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
	Support B	Dead* 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
Load combination 4 - D+0.7E	Support A	Dead* 1.00
		Seismic * 0.70
		Dead * 1.00
		Seismic * 0.70
	Support B	Dead * 1.00
		Seismic * 0.70
Analysis results		
Maximum moment	$\mathrm{M}_{\max }=145.3$ kips_ft	$\mathrm{M}_{\text {min }}=\mathbf{0}$ kips_ft
Maximum shear	$\mathrm{V}_{\text {max }}=22.8 \mathrm{kips}$	$V_{\text {min }}=-28 \mathrm{kips}$
Deflection	$\delta_{\text {max }}=0.8 \mathrm{in}$	$\delta_{\text {min }}=\mathbf{0}$ in
Maximum reaction at support A	$\mathrm{RA}_{\text {_max }}=\mathbf{2 2 . 8} \mathrm{kips}$	$\mathrm{RA}_{\text {_min }}=11.4 \mathrm{kips}$
Unfactored dead load reaction at support A	$\mathrm{R}_{\text {A_Dead }}=9.3 \mathrm{kips}$	
Unfactored live load reaction at support A	RA_Live $=9.8 \mathrm{kips}$	
Unfactored roof live load reaction at support A	RA_Roof live = 2.1 kips	
Unfactored snow load reaction at support A	RA_Snow $=6.2 \mathrm{kips}$	
Unfactored seismic load reaction at support A	$\mathrm{RA}_{\text {_Seismic }}=\mathbf{3} \mathrm{kips}$	
Maximum reaction at support B	$\mathrm{RB}_{-} \mathrm{max}=\mathbf{2 8} \mathrm{kips}$	RB _min $^{\text {a }} \mathbf{1 8 . 2} \mathbf{~ k i p s ~}$
Unfactored dead load reaction at support B	$\mathrm{R}_{\text {B_Dead }}=9.3 \mathrm{kips}$	
Unfactored live load reaction at support B	RB_Live $=9.8 \mathrm{kips}$	
Unfactored roof live load reaction at support B	RB_Rooflive = 2.1 kips	
Unfactored snow load reaction at support B	Re_Snow = 6.2 kips	
Unfactored seismic load reaction at support B	RB_Seismic $=12.9 \mathrm{kips}$	
Section details		
Section type	W 12x87 (AISC 15th	
ASTM steel designation	A992	
Steel yield stress	$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$	
Steel tensile stress	$\mathrm{Fu}_{\mathrm{u}}=65 \mathrm{ksi}$	

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Transfer Beam 1 (B9)				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Modulus of elasticity

$$
\mathrm{E}=29000 \mathrm{ksi}
$$

Safety factors

Safety factor for tensile yielding
$\Omega_{\text {ty }}=1.67$
Safety factor for tensile rupture
$\Omega \mathrm{tr}=2.00$
Safety factor for compression
Safety factor for flexure
$\Omega \mathrm{c}=1.67$
$\Omega_{b}=1.67$

Lateral bracing

Span 1 has continuous lateral bracing
Classification of sections for local buckling - Section B4.1
Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
Classification of web in flexure - Table B4.1b (case 15
Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
($\mathrm{d}-2^{*} \mathrm{k}$) / $\mathrm{tw}=18.80$
$\lambda_{\text {pwf }}=3.76$ * $\sqrt{ }\left[E / F_{y}\right]=90.55$
$\lambda_{r w f}=5.70 * \sqrt{[E / F y]}=137.27 \quad$ Compact
Section is compact in flexure
Design of members for shear - Chapter G
Required shear strength
Web area
Web plate buckling coefficient
Web shear coefficient - eq G2-3
Nominal shear strength - eq G6-1
Safety factor for shear
Allowable shear strength
$\mathrm{b}_{\mathrm{f}} /\left(2^{*} \mathrm{tf}_{\mathrm{f}}\right)=7.47$
$\lambda_{\text {pff }}=0.38 * \sqrt{ }[\mathrm{E} / \mathrm{Fy}]=9.15$
$\lambda_{\mathrm{rff}}=1.0$ * $\sqrt{ }[\mathrm{E} / \mathrm{Fy}]=24.08 \quad$ Compact

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 1 (B9)				Sheet no./rev.5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Design of members for flexure in the major axis - Chapter F

Required flexural strength
$\mathrm{Mr}_{\mathrm{r}}=\max \left(\operatorname{abs}\left(\mathrm{Ms}_{1 _ \text {_max }}\right), \mathrm{abs}\left(\mathrm{Mst}_{1}\right.\right.$ min $\left.)\right)=145.338 \mathrm{kips} \mathrm{ft}$
Yielding - Section F2.1
Nominal flexural strength for yielding - eq F2-1
$M_{\text {nyld }}=M_{p}=F_{y}{ }^{*} Z_{x}=550$ kips_ft
Nominal flexural strength
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{Mnyld}_{\text {n }}=\mathbf{5 5 0 . 0 0 0}$ kips_ft
Allowable flexural strength
$\mathrm{M}_{\mathrm{c}}=\mathrm{Mn}_{\mathrm{n}} / \Omega_{\mathrm{b}}=329.341 \mathrm{kips} \mathrm{ft}$
PASS - Allowable flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, roof live and snow loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{s 1} / 240=1.188$ in
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=0.767 \mathrm{in}$

PROJECT: Yaroslavsky Residence
PROJECT NUMBER:
8119
SUBJECT: Master Suite Transfer Beam 2
DESIGN BY: BJW

NOTES: B10-UPPER LEVEL

GEOMETRY:

Tributary width
Beam length

W_{T}	$=8.713 \mathrm{ft}$
L	$=30.604 \mathrm{ft}$

Trib 1	Trib 2
9.76	7.61
15.67	$\mathbf{1 4 . 9 3 8}$

SURFACE LOADS:

Dead load
Superimposed dead load
Live load
Snow load

DL =	0
SDL $=$	30
LL =	40
SL =	0

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

DL $=$	0	plf
SDL $=$	$\mathbf{2 6 1 . 3 9 2}$	plf
LL $=$	348.523	plf
SL $=$	0	plf

0	klf
0.261	klf
0.349	klf
0	klf

REACTIONS:

| Girder reaction | RDL | $=$ | $\mathbf{0 . 0 0}$ |
| ---: | :--- | :--- | :--- | kips

PROJECT:	Yaroslavsky Residence	PROJECT NUMBER:	8119
SUBJECT: \quad Master Suite Transfer Beam 2	DATE:	2021-03-02	
DESIGN BY: BJW			
NOTES: B10 - UPPER LEVEL DECK			

GEOMETRY:

Tributary width
Beam length

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

LINE LOADS:

Dead load
Superimposed dead load
Live load
Snow load

$$
\begin{array}{rcl}
\mathrm{DL}= & 0.0 & \text { plf } \\
\mathrm{SDL}= & \mathbf{2 1 5 . 3} & \text { plf } \\
\mathrm{LL}= & \mathbf{3 6 4 . 2} & \text { plf } \\
\mathrm{SL}= & \mathbf{2 1 5 . 3} & \text { plf }
\end{array}
$$

0.0 klf
0.2 klf
0.4 klf
0.2 klf

REACTIONS:

	RDL	$=$	$\mathbf{0 . 0 0}$
Girder reaction	kips		
RSDL	$=$	$\mathbf{3 . 2 9}$	kips
RLL	$=$	5.57	kips
	RSL $=$	$\mathbf{3 . 2 9}$	kips

PROJECT: Yaroslavsky Residence
PROJECT NUMBER:
8119
SUBJECT: Master Suite Transfer Beam 2
DESIGN BY: BJW
\square

GEOMETRY:

Tributary width
Beam length

W_{T}	$=8.713 \mathrm{ft}$
L	$=30.604 \mathrm{ft}$

Trib 1	Trib 2
9.76	7.61
15.67	$\mathbf{1 4 . 9 3 8}$

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

DL =	0
SDL $=$	15
LL =	20
SL =	30

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

DL $=$	0	plf
SDL $=$	130.696	plf
LL $=$	174.261	plf
SL $=$	$\mathbf{2 6 1 . 3 9 2}$	plf

0	klf
0.131	klf
0.174	klf
0.261	klf

REACTIONS:

	RDL $=$	$\mathbf{0 . 0 0}$	kips
Girder reaction	RSDL $=$	$\mathbf{2 . 0 0}$	kips
RLL $=$	$\mathbf{2 . 6 7}$	kips	
RSL $=$	$\mathbf{4 . 0 0}$	kips	

	Line Load Total	
SDL	0.607	klf
LL	0.713	klf
RL	0.174	klf
SL	0.477	klf

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 2 (B10)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (AISC360-16)

In accordance with AISC360-16 using the ASD method

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 2 (B10)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Support conditions

Support A	Vertically restrained
	Rotationally free
Support B	Vertically restrained
	Rotationally free
Applied loading	
Beam loads	Dead self weight of beam * 1
	Dead full UDL $0.607 \mathrm{kips} / \mathrm{ft}$
	Live full UDL $0.713 \mathrm{kips} / \mathrm{ft}$
	Roof live full UDL $0.174 \mathrm{kips} / \mathrm{ft}$
	Snow full UDL 0.477 kips/ft
	Seismic point load 5.802 kips at 117.50 in
	Seismic point load 5.802 kips at 171.50 in
Load combinations	
Load combination 1 - D+0.75L+0.75Lr	Support A Dead * 1.00
	Live * 0.75
	Roof live * 0.75
	Dead * 1.00
	Live * 0.75
	Roof live * 0.75
	Support B Dead * 1.00
	Live * 0.75
	Roof live * 0.75
Load combination 2 - D+0.75L+0.75S	Support A Dead * 1.00
	Live * 0.75
	Snow * 0.75
	Dead * 1.00

Load combinations

Load combination 1 - D+0.75L+0.75Lr

Load combination $2-\mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Transfer Beam 2 (B10)				Sheet no./rev. 3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

		Live * 0.75
		Snow * 0.75
	Support B	Dead * 1.00
		Live * 0.75
		Snow * 0.75
Load combination $3-\mathrm{D}+0.75 \mathrm{~L}+0.525 \mathrm{E}+0.75 \mathrm{~S}$	Support A	Dead * 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
		Dead * 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
	Support B	Dead * 1.00
		Live * 0.75
		Snow * 0.75
		Seismic * 0.53
Load combination 4 - D+0.7E	Support A	Dead * 1.00
		Seismic * 0.70
		Dead * 1.00
		Seismic * 0.70
	Support B	Dead * 1.00
		Seismic * 0.70
Analysis results		
Maximum moment	$\mathrm{M}_{\max }=\mathbf{2 2 4 . 3}$ kips_ft	$\mathrm{M}_{\text {min }}=\mathbf{0}$ kips_ft
Maximum shear	$\mathrm{V}_{\text {max }}=28 \mathrm{kips}$	$\mathrm{V}_{\text {min }}=-26.7 \mathrm{kips}$
Deflection	$\delta_{\text {max }}=1.1$ in	$\delta_{\text {min }}=\mathbf{0}$ in
Maximum reaction at support A	$R_{\text {A_max }}=\mathbf{2 8} \mathrm{kips}$	$\mathrm{RA}_{\text {_min }}=15.6 \mathrm{kips}$
Unfactored dead load reaction at support A	$R_{A_{_} \text {Dead }}=10.7 \mathrm{kips}$	
Unfactored live load reaction at support A	$R_{A_{_} \text {Live }}=\mathbf{1 0 . 9}$ kips	
Unfactored roof live load reaction at support A	$\mathrm{R}_{\text {A_Rooflive }}=\mathbf{2 . 7} \mathrm{kips}$	
Unfactored snow load reaction at support A	$\mathrm{RA}_{\text {_Snow }}=7.3 \mathrm{kips}$	
Unfactored seismic load reaction at support A	$\mathrm{RA}_{\text {_ Seismic }}=7 \mathrm{kips}$	
Maximum reaction at support B	$R_{\text {B_max }}=\mathbf{2 6 . 7}$ kips	$R_{\text {B_min }}=13.8$ kips
Unfactored dead load reaction at support B	RB_Dead $=10.7 \mathrm{kips}$	
Unfactored live load reaction at support B	RB_Live $=\mathbf{1 0 . 9}$ kips	
Unfactored roof live load reaction at support B	RB_Rooflive = 2.7 kips	
Unfactored snow load reaction at support B	RB_Snow $=7.3 \mathrm{kips}$	
Unfactored seismic load reaction at support B	RB_Seismic $=4.6 \mathrm{kips}$	
Section details		
Section type	W 16x89 (AISC 15th	
ASTM steel designation	A992	
Steel yield stress	$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$	
Steel tensile stress	$\mathrm{Fu}=65 \mathrm{ksi}$	
Modulus of elasticity	$\mathrm{E}=29000 \mathrm{ksi}$	

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 2 (B10)				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Safety factors

Safety factor for tensile yielding
$\Omega_{\text {ty }}=1.67$
Safety factor for tensile rupture
$\Omega \mathrm{tr}=2.00$
Safety factor for compression
Safety factor for flexure
$\Omega_{\mathrm{c}}=1.67$
$\Omega \mathrm{b}=1.67$

Lateral bracing

Span 1 has continuous lateral bracing
Classification of sections for local buckling - Section B4.1
Classification of flanges in flexure - Table B4.1b (case 10)
Width to thickness ratio
$\mathrm{bf}_{\mathrm{f}} /\left(2^{*} \mathrm{tf}_{\mathrm{f}}\right)=5.94$
Limiting ratio for compact section
Limiting ratio for non-compact section
$\lambda_{\text {pff }}=0.38 * \sqrt{ }\left[E / F_{y}\right]=9.15$
$\lambda_{\text {rff }}=1.0 * \sqrt{ }\left[E / F_{y}\right]=24.08 \quad$ Compact

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
($\mathrm{d}-\mathrm{2}^{*} \mathrm{k}$) / tw=27.12
$\lambda_{\text {pwf }}=3.76 * \sqrt{ }[E / F y]=90.55$
$\lambda_{r w f}=5.70 * \sqrt{ }\left[E / F_{y}\right]=137.27 \quad$ Compact
Section is compact in flexure

Design of members for shear - Chapter G

Required shear strength
Web area
Web plate buckling coefficient
Web shear coefficient - eq G2-3
Nominal shear strength - eq G6-1
Safety factor for shear
Allowable shear strength
$\mathrm{V}_{\mathrm{r}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=28.005 \mathrm{kips}$
$A_{w}=d^{*} t_{w}=8.82 \mathrm{in}^{2}$
$\mathrm{k}_{\mathrm{v}}=5.34$
$\mathrm{C}_{\mathrm{v} 1}=1$
$V_{n}=0.6$ * $F_{y}{ }^{*} A_{w}{ }^{*} C_{v 1}=264.600 \mathrm{kips}$
$\Omega \mathrm{v}=1.50$
$\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{n}} / \Omega_{\mathrm{v}}=176.400 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 2 (B10)				Sheet no./rev.5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Design of members for flexure in the major axis - Chapter F

Required flexural strength

Yielding - Section F2.1
Nominal flexural strength for yielding - eq F2-1
$M_{\text {nyld }}=M_{p}=F_{y}{ }^{*} Z_{x}=729.167$ kips_ft
Nominal flexural strength
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{Mnyld}_{\text {n }}=\mathbf{7 2 9 . 1 6 7}$ kips_ft
Allowable flexural strength
$M_{c}=M_{n} / \Omega_{b}=436.627$ kips_ft
PASS - Allowable flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, roof live and snow loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=$ Ls $1 / 240=1.53 \mathrm{in}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=1.079 \mathrm{in}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 3 (B11)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (AISC360-16)

In accordance with AISC360-16 using the ASD method

Load Envelope - Combination 2

Support conditions

Support A
Vertically restrained
Rotationally free
Support B
Vertically restrained
Rotationally free

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Transfer Beam 3 (B11)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Applied loading

Beam loads
POINT LOADS FROM B9
(SEE RESPECTIVE TEDD
Load combinations

Load combination 1 - D+0.75L+0.525E+0.75S

Load combination 2 - D+0.7E

Maximum moment	$\mathrm{M}_{\max }=\mathbf{2 2 6 . 4}$ kips_ft	$\mathrm{M}_{\text {min }}=0 \mathrm{kkips}$ _ft
Maximum shear	$\mathrm{V}_{\text {max }}=26.8 \mathrm{kips}$	$\mathrm{V}_{\text {min }}=-39.7 \mathrm{kips}$
Deflection	$\delta_{\text {max }}=0.2 \mathrm{in}$	$\delta_{\text {min }}=\mathbf{0}$ in
Maximum reaction at support A	$\mathrm{RA}_{\text {_max }}=\mathbf{2 6 . 8}$ kips	$\mathrm{R}_{\text {A_min }}=14.1$ kips
Unfactored dead load reaction at support A	$\mathrm{RA}_{\mathrm{A}^{\text {Dead }}}=8.5 \mathrm{kips}$	
Unfactored live load reaction at support A	RA_Live $=8.3 \mathrm{kips}$	
Unfactored roof live load reaction at support A	$\mathrm{R}_{\text {A_Root live }}=1.9 \mathrm{kips}$	
Unfactored snow load reaction at support A	RA_Snow $=5.4$ kips	
Unfactored seismic load reaction at support A	$\mathrm{RA}_{\text {_Seismic }}=8 \mathrm{kips}$	
Maximum reaction at support B	RB_max $=39.7$ kips	$\mathrm{RB}_{-} \mathrm{min}=\mathbf{2 0 . 8}$ kips
Unfactored dead load reaction at support B	RB_{-}Dead $=12.4 \mathrm{kips}$	
Unfactored live load reaction at support B	RB_Live $=12.4$ kips	
Unfactored roof live load reaction at support B	Rb_Rooflive = 2.9 kips	
Unfactored snow load reaction at support B	RB_Snow $=8.1 \mathrm{kips}$	
Unfactored seismic load reaction at support B	RB_Seismic $=\mathbf{1 1 . 9}$ kips	

Section details

Dead self weight of beam * 1
Dead point load 20 kips at 102.50 in
Live point load 20.7 kips at 102.50 in
Roof live point load 4.8 kips at 102.50 in
Snow point load 13.5 kips at 102.50 in
Seismic point load 19.9 kips at 102.50 in

Support A	Dead * 1.00
	Live * 0.75
	Snow * 0.75
	Seismic * 1.00
	Dead * 1.00
	Live * 0.75
	Snow * 0.75
	Seismic * 1.00
	Dead * 1.00
Support B	Live * 0.75
	Snow * 0.75
	Seismic * 1.00
Support A	Dead * 1.00
	Seismic * 0.70
	Dead * 1.00
Support B	Seismic * 0.70
	Dead * 1.00
	Seismic * 0.70

$M_{\text {max }}=\mathbf{2 2 6 . 4}$ kips_ft
$V_{\text {max }}=\mathbf{2 6 . 8}$ kips
$\delta_{\max }=0.2$ in
$R_{\text {A_max }}=\mathbf{2 6 . 8}$ kips

Rz_min = 20.8 kips
$R_{B_{_} \text {Dead }}=12.4$ kips
RB_Live $=\mathbf{1 2 . 4}$ kips
Rb_Roof live = 2.9 kips

RB_Seismic $=\mathbf{1 1 . 9}$ kips

Dead * 1.00
Live * 0.75
Snow * 0.75
Seismic * 1.00
Dead * 1.00
Live * 0.75
Snow * 0.75
Seismic * 1.00
Dead * 1.00
Live * 0.75
Snow * 0.75

Dead * 1.00
Seismic * 0.70
1.00

Dead * 1.00
Seismic * 0.70
$\mathrm{M}_{\text {min }}=\mathbf{0}$ kips_ft
$V_{\text {min }}=-39.7$ kips
$\delta_{\text {min }}=\mathbf{0}$ in
$R_{\text {A_min }}=14.1 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Upper Level Transfer Beam 3 (B11)				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

ASTM steel designation

Steel yield stress
Steel tensile stress
Modulus of elasticity

A992

$\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$
$\mathrm{E}=29000 \mathrm{ksi}$

Safety factors

Safety factor for tensile yielding
Safety factor for tensile rupture
Safety factor for compression
Safety factor for flexure
$\Omega_{\mathrm{ty}}=1.67$
$\Omega \mathrm{tr}=2.00$

Lateral bracing

Span 1 has continuous lateral bracing
Classification of sections for local buckling - Section B4.1
Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
$\mathrm{b}_{\mathrm{f}} /(2$ *tf) $=7.67$
$\lambda_{\text {pff }}=0.38 * \sqrt{ }\left[E / F_{y}\right]=9.15$
$\lambda_{\mathrm{rff}}=1.0 * \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=24.08 \quad$ Compact

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio
Limiting ratio for compact section
Limiting ratio for non-compact section
($d-2^{*} k$) $/ t_{w}=35.85$
$\lambda_{\text {pwf }}=3.76 * \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=90.55$
$\left.\lambda_{r w t}=5.70 * \sqrt{[E} / F_{y}\right]=137.27 \quad$ Compact
Section is compact in flexure

Design of members for shear - Chapter G

Required shear strength
Web area
Web plate buckling coefficient
Web shear coefficient - eq G2-3
Nominal shear strength - eq G6-1
Safety factor for shear
$\mathrm{V}_{\mathrm{r}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=\mathbf{3 9 . 7 1 4} \mathrm{kips}$
$\mathrm{A}_{\mathrm{w}}=\mathrm{d}^{*} \mathrm{t}_{\mathrm{w}}=6.439 \mathrm{in}^{2}$
$\mathrm{kv}=5.34$
$\mathrm{C}_{\mathrm{v} 1}=\mathbf{1}$
$V_{n}=0.6$ * $F_{y}^{*} A_{w}{ }^{*} C_{v 1}=193.155$ kips
$\Omega_{v}=1.50$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Upper Level Transfer Beam 3 (B11)				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 2 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Allowable shear strength	$\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{n}} / \Omega_{\mathrm{v}}=128.770$ kips
	PASS - Allowable shear strength exceeds required shear strength
Design of members for flexure in the major axis - Chapter F	
Required flexural strength	
Yielding - Section F2.1	
Nominal flexural strength for yielding - eq F2-1	$M_{\text {nyld }}=\mathrm{M}_{\mathrm{p}}=\mathrm{F}_{\mathrm{y}}{ }^{*} \mathrm{Z}_{\mathrm{x}}=541.667$ kips_ft
Nominal flexural strength	$\mathrm{Mn}_{\mathrm{n}}=\mathrm{M}_{\text {nyld }}=541.667 \mathrm{kips}$ _ft
Allowable flexural strength	$\mathrm{Mc}_{\mathrm{c}}=\mathrm{Mn}_{\mathrm{n}} / \Omega_{\mathrm{b}}=324.351 \mathrm{kips} \mathrm{ft}$
	PASS - Allowable flexural strength exceeds required flexural strength
Design of members for vertical deflection	
Consider deflection due to dead, live, roof live and snow loads	
Limiting deflection	$\delta_{\text {lim }}=L_{s 1} / 240=0.714 \mathrm{in}$
Maximum deflection span 1	$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \mathrm{abs}\left(\delta_{\min }\right)\right)=0.214 \mathrm{in}$
	PASS - Maximum deflection does not exceed deflection limit

3 | LATERAL DESIGN
3.1 | WOOD FRAME SHEAR WALL DESIGN

| Tekla Tedds
 Fast + Epp | Project
 323 Dean Street, Suite \#3
 Brooklyn, NY 11217 | Yaroslavsky Residence |
| :---: | :--- | :--- | :--- | :--- | :--- |

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
Panel length
Total area of wall

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of studs
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
Stud spacing
$\mathrm{s}=16 \mathrm{in}$
Nominal end post size
2×2 " x 6 "
Dressed end post size
Cross-sectional area of end posts
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$

Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$A_{e}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
$A_{\text {en }}=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Service condition
Dry
Temperature
100 degF or less
Vertical anchor stiffness
$\mathrm{k}_{\mathrm{a}}=\mathbf{3 0 0 0 0 \mathrm { lb } / \mathrm { in }}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 1				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=\mathbf{0 . 5 0}$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=276.25 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel
Lr = $369 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel
$\mathrm{S}=553 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=952 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 D+W$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
K_{F E}=1.76
$$

Resistance factor for tension - Table N2 $\quad \phi t=0.80$
Resistance factor for compression - Table N2 $\quad \phi \mathrm{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$\mathrm{Cfc}_{\mathrm{F}}=1.10$
Wet service factor for tension - Table 4A
$C_{m t}=1.00$
Wet service factor for compression - Table 4A
$С_{\text {мс }}=1.00$
Wet service factor for modulus of elasticity - Table 4A

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 1				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

	$\mathrm{C}_{\mathrm{me}}=\mathbf{1 . 0 0}$
Temperature factor for tension - Table 2.3.3	$\mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3	
	$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}_{\mathrm{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity

Critical buckling design value
Reference compression design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1665 \mathrm{psi}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}^{*}{ }^{*} \mathrm{qc}^{*} \lambda{ }^{*} \mathrm{Cmc}^{*} \mathrm{Ctc}^{*} \mathrm{Cfc}^{*} \mathrm{Ci}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}$) $=0.45$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=3.85 \mathrm{ft}$
Shear wall aspect ratio
h / b = 2.468

Segmented shear wall capacity

Maximum shear force under seismic loading
$V_{s_{_} \max }=E_{q}=0.952 \mathrm{kips}$
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
$V_{s}=\phi \mathrm{D}$ * $\mathrm{V}_{\mathrm{s}}{ }^{*} \mathrm{~b}$ * $\left(1.25-0.125\right.$ * $\left.\mathrm{h} / \mathrm{b}_{\mathrm{s}}\right)=2.842 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s} \text { _max }} / \mathrm{V}_{\mathrm{s}}=0.335$
PASS - Shear capacity for seismic load exceeds maximum shear force

Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
h / b = 2.468
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=0.952 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=2.349 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=174 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi_{t}{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.108$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=0.952 \mathrm{kips}$
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{D s}$ * $\left.\left(D+S_{w t}^{*} h\right)++0.7^{*} S\right)$ * $/ 2$ $=0.619 \mathrm{kips}$
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})+\mathrm{P}=2.968 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=180 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}_{\mathrm{c}}{ }^{*} \phi \mathrm{c}$ * $\lambda^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{Ctc}^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}^{*}{ }^{*} \mathrm{Cp}=1433 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 2 6}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 1				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=2.349 \mathrm{kips}$
$\mathrm{T}_{2}=2.349 \mathrm{kips}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=0.952 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=247.27 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\mathrm{ss}}{ }^{*} \mathrm{~h}\right)=2.349 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} \mathrm{~T}_{\delta} /\left(\mathrm{ka}^{*} \mathrm{~b}\right)=0.367 \mathrm{in}$
$\mathrm{C}_{\mathrm{d} \delta}=4$
$\mathrm{l}_{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l} \mathrm{e}=1.466 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=\mathbf{0 . 6 4 3}$
PASS - Shear wall deflection is less than deflection limit

| Tekla Tedds
 Fast + Epp | Project
 323 Dean Street, Suite \#3
 Brooklyn, NY 11217 | Yaroslavsky Residence |
| :---: | :--- | :--- | :--- | :--- | :--- |

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of studs
Stud spacing
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$

Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$\mathrm{s}=16 \mathrm{in}$
2×2 " 6 "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Ae $=16.5 \mathrm{in}^{2}$
Dia $=1$ in
$A_{\text {en }}=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6$ "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Service condition
Dry
Temperature
Vertical anchor stiffness
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=\mathbf{3 0 0 0 0} \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 2				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=\mathbf{0 . 5 0}$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=306 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel
$\mathrm{Lr}=408 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel
$\mathrm{S}=611.25 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=1792 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 D+W$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
K_{F E}=1.76
$$

Resistance factor for tension - Table N2 $\quad \phi t=0.80$
Resistance factor for compression - Table N2 $\quad \phi \mathrm{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$\mathrm{Cfc}_{\mathrm{F}}=1.10$
Wet service factor for tension - Table 4A
$C_{m t}=1.00$
Wet service factor for compression - Table 4A
$С_{\text {мс }}=1.00$
Wet service factor for modulus of elasticity - Table 4A

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 2				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

	$\mathrm{C}_{\mathrm{me}}=\mathbf{1 . 0 0}$
Temperature factor for tension - Table 2.3.3	$\mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3	
	$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$

Temperature factor for modulus of elasticity - Table 2.3.3

```
\(C_{t E}=1.00\)
\(\mathrm{C}_{\mathrm{i}}=\mathbf{1 . 0 0}\)
\(\mathrm{C}_{\mathrm{T}}=1.00\)
```



```
\(\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1665 \mathrm{psi}\)
\(\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}^{*}{ }^{*} \mathrm{qc}^{*} \lambda{ }^{*} \mathrm{Cmc}^{*} \mathrm{Ctc}^{*} \mathrm{Cfc}^{*} \mathrm{Ci}=3208 \mathrm{psi}\)
\(\mathrm{C}=0.8\)
\(\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.\)
\(\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.45\)
```

Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
Adjusted modulus of elasticity
Critical buckling design value
Reference compression design value
For sawn lumber
Column stability factor - eqn.3.7-1

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=7.333 \mathrm{ft}$
h / b = 1.295
Segmented shear wall capacity
Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 1.295
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s _m a x} / V_{s}=0.312$
$V=E_{q}=1.792 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.107$
$V=E_{q}=1.792 \mathrm{kips}$
$=0.674 \mathrm{kips}$
$V_{s_{-} \max }=E_{q}=1.792 \mathrm{kips}$
$V_{s}=\phi D{ }^{*} V_{s}{ }^{*} b=5.749$ kips

PASS - Shear capacity for seismic load exceeds maximum shear force
$\left.\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)-\mathrm{P}=2.321 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=172 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{D S}^{*}\left(D+S_{w t}^{*} h\right)++0.7$ * S) $s / 2$
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=2.996$ kips
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=182 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * ϕ_{c} * λ * $\mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{Cp}=1433 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 2 7}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 2				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=2.321 \mathrm{kips}$
$\mathrm{T}_{2}=2.321 \mathrm{kips}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=1.792 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=244.36 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\text {os }}{ }^{*} \mathrm{~h}\right)=2.321 \mathrm{kips}$
δ swse $=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.264$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.055 \mathrm{in}$
δ sws $/ \Delta$ s_allow $=\mathbf{0 . 4 6 3}$
PASS - Shear wall deflection is less than deflection limit

| Tekla Tedds
 Fast + Epp | Project
 323 Dean Street, Suite \#3
 Brooklyn, NY 11217 | Yaroslavsky Residence |
| :---: | :--- | :--- | :--- | :--- | :--- |

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method
Tedds calculation version 1.2.04

Panel details

Structural wood panel sheathing on one side
Panel height

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of studs
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
Stud spacing
$\mathrm{s}=16 \mathrm{in}$
Nominal end post size
$2 \times 2 " \times 6 "$
Dressed end post size
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of end posts
$\mathrm{A}=16.5 \mathrm{in}^{2}$
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6$ "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Service condition
Dry
Temperature
100 degF or less
Vertical anchor stiffness
$\mathrm{k}_{\mathrm{a}}=\mathbf{3 0 0 0 0 \mathrm { lb } / \mathrm { in }}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 3				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=\mathbf{0 . 5 0}$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=306 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel
$\mathrm{Lr}=408 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel
$\mathrm{S}=611.25 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=1257 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 D+W$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
K_{F E}=1.76
$$

Resistance factor for tension - Table N2 $\quad \phi t=0.80$
Resistance factor for compression - Table N2 $\quad \phi \mathrm{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$\mathrm{Cfc}_{\mathrm{F}}=1.10$
Wet service factor for tension - Table 4A
$C_{m t}=1.00$
Wet service factor for compression - Table 4A
$С_{\text {мс }}=1.00$
Wet service factor for modulus of elasticity - Table 4A

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 3				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

	$\mathrm{C}_{\mathrm{me}}=\mathbf{1 . 0 0}$
Temperature factor for tension - Table 2.3.3	$\mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3	
	$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$

Temperature factor for modulus of elasticity - Table 2.3.3

```
\(C_{t E}=1.00\)
\(\mathrm{C}_{\mathrm{i}}=\mathbf{1 . 0 0}\)
\(\mathrm{C}_{\mathrm{T}}=1.00\)
```



```
\(\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1665 \mathrm{psi}\)
\(\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}^{*}{ }^{*} \mathrm{qc}^{*} \lambda{ }^{*} \mathrm{Cmc}^{*} \mathrm{Ctc}^{*} \mathrm{Cfc}^{*} \mathrm{Ci}=3208 \mathrm{psi}\)
\(\mathrm{C}=0.8\)
\(\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.\)
\(\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.45\)
```

Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
Adjusted modulus of elasticity
Critical buckling design value
Reference compression design value
For sawn lumber
Column stability factor - eqn.3.7-1

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=5.146 \mathrm{ft}$
h / b = 1.846
Segmented shear wall capacity
Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s _m a x} / V_{s}=0.312$
$h / b=1.846$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=1.257 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.106$
$V=E_{q}=1.257 \mathrm{kips}$
$=0.674 \mathrm{kips}$
$V_{\text {s_max }}=E_{q}=1.257$ kips
$V_{s}=\phi D{ }^{*} V_{s}{ }^{*} b=4.034$ kips

PASS - Shear capacity for seismic load exceeds maximum shear force
$\left.\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)-\mathrm{P}=2.321 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=172 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{D S}^{*}\left(D+S_{w t}^{*} h\right)++0.7$ * S) $s / 2$
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=2.995 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=181 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * ϕ_{c} * λ * $\mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{Cp}=1433 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 2 7}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 3				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=2.321 \mathrm{kips}$
$\mathrm{T}_{2}=2.321 \mathrm{kips}$
$V_{\delta s}=E_{q}=1.257 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {is }} / \mathrm{b}=\mathbf{2 4 4 . 2 8 \mathrm { lb } / \mathrm { ft }}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=2.321 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} v_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+v_{\delta s}{ }^{*} h /\left(G_{a}\right)+h{ }^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.31$ in
$C_{d \delta}=4$
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{le}=1.239 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.544$
PASS - Shear wall deflection is less than deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 4				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 17 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.5 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=17.333 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=164.666 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 6"
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$s=16$ in
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=\mathbf{3 0 0 0 0} \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 4				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=276.25 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel
$\mathrm{Lr}=369 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel
$\mathrm{S}=553 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=4000 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{F E}=1.76$
Resistance factor for tension - Table N2 $\quad \phi t=\mathbf{0 . 8 0}$
Resistance factor for compression - Table N2 $\quad \phi \mathrm{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$C_{F t}=1.30$
Size factor for compression - Table 4A
$\mathrm{CFc}_{\mathrm{F}}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 4				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Wet service factor for compression - Table 4A $\quad \mathrm{Cmc}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
$C_{M E}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C} \boldsymbol{T}=1.00$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\text {me }}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=\mathbf{1 6 6 5} \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * $\mathrm{\phi c}^{*} \lambda^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{Cl}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{C}\right)=0.45$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
Segmented shear wall capacity
Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
3.5
$\mathrm{b}=17.333 \mathrm{ft}$
h / b = 0.548
$V_{s_{-} \max }=E_{q}=4 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=13.589 \mathrm{kips}$
$V_{s_{-} \max } / V_{s}=0.294$
PASS - Shear capacity for seismic load exceeds maximum shear force
$h / b=0.548$
$\mathrm{V}=\mathrm{Eq}_{\mathrm{q}}=\mathbf{4} \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})-\mathrm{P}=2.192 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=162 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.101$
PASS - Design tensile stress exceeds maximum applied tensile stress
$\mathrm{V}=\mathrm{Eq}_{\mathrm{q}}=4 \mathrm{kips}$
$P=\left(1.2\right.$ * ($\left.D+S_{w t}^{*} h\right)+0.2$ * $S_{D s}$ * $\left(D+S_{w t}^{*} h\right)++0.7$ * $\left.S\right)$ * $/ 2$
$=0.619 \mathrm{kips}$
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=2.812 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=170 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{Ctc}^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}^{*} \mathrm{C}_{\mathrm{p}}=1433 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}^{\prime}}=\mathbf{0 . 1 1 9}$

Tekla.Tedds Fast + Epp	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
323 Dean Street, Suite \#3 Brooklyn, NY 11217	Section Wood Shear Wall - Supp. High Roof Wall 4				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/17/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=2.192 \mathrm{kips}$
$\mathrm{T}_{2}=2.192 \mathrm{kips}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=\mathbf{4} \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\mathrm{ss}}=\mathrm{V}_{\text {is }} / \mathrm{b}=230.77 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\mathrm{ss}}{ }^{*} \mathrm{~h}\right)=\mathbf{2 . 1 9 2} \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} v_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+v_{\delta s}{ }^{*} h /\left(G_{a}\right)+h{ }^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.19$ in
$C_{d \delta}=4$
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=\mathbf{0 . 7 5 9} \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.333$
PASS - Shear wall deflection is less than deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 5				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 19 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.5 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=5.917 \mathrm{ft}$
$\mathrm{A}=\mathrm{h}$ * $\mathrm{b}=56.209 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

> 2" x 6"
> $1.5^{\prime \prime} \times 5.5^{\prime \prime}$
> $\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
> $\mathrm{~s}=16 \mathrm{in}$
> $2 \times 2 " \times 6 "$
> $2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
> Ae $=16.5 \mathrm{in}^{2}$
> $\mathrm{Dia}=1 \mathrm{in}$
> Aen $=13.5 \mathrm{in}^{2}$
> $2 \times 2 " \times 6 "$
> 2×1.5 " x 5.5"
> Dry
> 100 degF or less
> $\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 5				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=1440 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A
$\mathrm{C}_{\mathrm{Fc}}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
$С_{м с}=1.00$
Wet service factor for modulus of elasticity - Table 4A
$C_{\text {ME }}=\mathbf{1 . 0 0}$

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 5				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$E_{m i n}{ }^{\prime}=E_{\text {min }}{ }^{*} K_{\text {fe }}{ }^{*} \phi_{s}{ }^{*} \mathrm{C}_{\text {me }}{ }^{*} \mathrm{C}_{\mathrm{te}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=870000 \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1665 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}$ * $\mathrm{K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{c}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=\mathbf{0 . 4 5}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
3.5

Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 1.606
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{b}=5.917 \mathrm{ft}$
h / b = 1.606
$V_{s_{-} \max }=\mathrm{E}_{\mathrm{q}}=1.44 \mathrm{kips}$
$V_{s}=\phi \mathrm{D}{ }^{*} \mathrm{~V}_{\mathrm{s}}{ }^{*} \mathrm{~b}=4.639 \mathrm{kips}$
$V_{s_{-} \max } / V_{s}=0.31$
PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=1.44 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=2.312 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=171 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*}{ }^{*}{ }^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.106$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3

Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=1.44 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * $S_{d s}$ * $\left.S_{w t}^{*} h\right)$ * $/ 2=\mathbf{0 . 1 0 6}$ kips
$\left.\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)+\mathrm{P}=2.418 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=147 \mathrm{lb} / \mathrm{in}^{2}$

$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 0 2}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
$\mathrm{T}_{1}=2.312 \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=\mathbf{2 . 3 1 2} \mathrm{kips}$

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 5				Sheet no./rev.4	
	Calc. by BJW	$\begin{aligned} & \text { Date } \\ & \text { 2/19/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$V_{\delta s}=E_{q}=1.44 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=243.38 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=\mathbf{2 . 3 1 2} \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s \mathrm{~s}}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h * T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.211 \mathrm{in}$
$C_{d \delta}=4$
$l_{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{le}=0.845 \mathrm{in}$
δ sws $/ \Delta$ s_allow $=0.371$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 6				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.5 \mathrm{ft}$
Panel length
Total area of wall
$b=11.375 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=108.063 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 4"
$1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
2×2 " $\times 4$ "
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}=10.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1$ in
Aen $=7.5 \mathrm{in}^{2}$
2×2 " $\times 4$ "
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
Dry
100 degF or less
$\mathrm{ka}=80000 \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity

Sheathing details

Sheathing material
Fastener type
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
In plane seismic load acting at head of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$

Design spectral response accel. par., short periods
$\mathrm{E}_{\mathrm{q}}=4800 \mathrm{lbs}$

From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}_{\mathrm{f}}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=\mathbf{2 . 7 0}$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi \mathrm{c}=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.50$
Size factor for compression - Table 4A
$C_{F c}=1.15$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=1.00$
Wet service factor for compression - Table 4A $\quad \mathrm{C}_{\mathrm{mc}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {Ме }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\mathrm{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{Emin}^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=674 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi \mathrm{c}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
For sawn lumber
$\mathrm{C}=0.8$
Column stability factor - eqn.3.7-1
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}$) $=0.19$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=11.375 \mathrm{ft}$
h / b = 0.835
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{s}$ max $=E_{q}=4.8 \mathrm{kips}$
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 0.835
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=8.918$ kips
$\mathrm{V}_{\mathrm{s} \text { _max }} / \mathrm{V}_{\mathrm{s}}=0.538$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.8 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\left.\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)-\mathrm{P}=4.009 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=535 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.287$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.8 \mathrm{kips}$
$C=V^{*} h /(b)+P=4.114$ kips
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=392 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress
$P=\left(1.2\right.$ * $\mathrm{S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}+0.2$ * $\left.\mathrm{S}_{\mathrm{ds}}{ }^{*} \mathrm{~S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}\right)$ * $\mathrm{s} / 2=\mathbf{0} .106$ kips
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}$ * λ * $\mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*}{ }^{*} \mathrm{Ci}^{*} \mathrm{Cp}_{\mathrm{P}}=\mathbf{6 4 4} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 6 0 9}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord $1 \quad \mathrm{~T}_{1}=4.009 \mathrm{kips}$
Chord $2 \quad \mathrm{~T}_{2}=4.009 \mathrm{kips}$

Seismic deflection

Design shear force
$\mathrm{V}_{\text {} s \mathrm{~s}}=\mathrm{E}_{\mathrm{q}}=4.8 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 6				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
Δ s_allow $=0.020$ * $\mathrm{h}=2.28$ in
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\delta \mathrm{s}} / \mathrm{b}=421.98 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=4.009 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.324$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\mathrm{sws}}=\mathrm{Cd}_{\mathrm{d}}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.297 \mathrm{in}$
$\delta_{\text {sws }} / \Delta_{\text {s_allow }}=0.569$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 6				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$h=9.5 \mathrm{ft}$

Panel length
Total area of wall
$\mathrm{b}=8 \mathrm{ft}$
$\mathrm{A}=\mathrm{h}^{*} \mathrm{~b}=76 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
2×2 " $\times 6$ "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Dry
100 degF or less
Temperature
Vertical anchor stiffness
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity

Sheathing details

Sheathing material
Fastener type
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=3360 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 D+W+0.5 L_{f}+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}_{\mathrm{f}}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$C_{F c}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=1.00$
Wet service factor for compression - Table 4A $\quad \mathrm{C}_{\mathrm{mc}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {Ме }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. High Roof Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\mathrm{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{Emin}^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1665 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * ${ }_{\phi \mathrm{c}}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
$\mathrm{C}=0.8$
Column stability factor - eqn.3.7-1
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}$) $=0.45$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=8 \mathrm{ft}$
h / b = 1.188
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{\text {s_max }}=E_{q}=3.36$ kips
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
$h / b=1.188$
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=6.272 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s} \text { _max }} / \mathrm{V}_{\mathrm{s}}=0.536$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=3.36 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\left.\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)-\mathrm{P}=3.990 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=296 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.183$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=3.36 \mathrm{kips}$
$C=V^{*} h /(b)+P=4.096$ kips
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=\mathbf{2 4 8} \mathrm{lb} / \mathrm{in}^{2}$

PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * $\left.S_{d s}^{*} S_{w t}^{*} h\right)$ * $/ 2=0.106$ kips
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * $\phi \mathrm{c}$ * λ * $\mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{Cp}_{\mathrm{p}}=1433 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 7 3}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord $1 \quad \mathrm{~T}_{1}=3.99 \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=3.99 \mathrm{kips}$

Seismic deflection

Design shear force
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{E}_{\mathrm{q}}=3.36 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. High Roof Wall 6				Sheet no./rev.4	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/19/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
Δ s_allow $=0.020$ * $\mathrm{h}=2.28$ in
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{V}_{\mathrm{\delta s}} / \mathrm{b}=420 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=3.990 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.339$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=1.355 \mathrm{in}$
$\delta_{\text {sws }} / \Delta_{\text {s_allow }}=0.595$
PASS - Shear wall deflection is less than deflection limit

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 1				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 19 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method
Tedds calculation version 1.2.04

Panel details

Structural wood panel sheathing on one side
Panel height
Panel length
Total area of wall

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of studs
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
Stud spacing
$\mathrm{s}=16 \mathrm{in}$
Nominal end post size
$2 \times 2 " \times 6 "$
Dressed end post size
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of end posts
$A_{e}=16.5 \mathrm{in}^{2}$
Hole diameter
Net cross-sectional area of end posts
$\mathrm{Dia}=1 \mathrm{in}$

Nominal collector size
Dressed collector size
$A_{\text {en }}=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Service condition
Dry
Temperature
100 degF or less
Vertical anchor stiffness
$\mathrm{ka}=\mathbf{8 0 0 0 0} \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 1				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=\mathbf{0 . 5 0}$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=19 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel
$\mathrm{Lr}=13 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel
$S=19 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=2040 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
K_{F E}=1.76
$$

Resistance factor for tension - Table N2 $\quad \phi t=0.80$
Resistance factor for compression - Table N2 $\quad \phi \mathrm{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$\mathrm{Cfc}_{\mathrm{c}}=1.10$
Wet service factor for tension - Table 4A
$C_{M t}=1.00$
Wet service factor for compression - Table 4A
$С_{\mathrm{m}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 1				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

$$
\text { СМе }=\mathbf{1 . 0 0}
$$

Temperature factor for tension - Table 2.3.3
$\mathrm{C}_{\mathrm{tt}}=1.00$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}_{\mathrm{T}}=1.00$
Adjusted modulus of elasticity

Critical buckling design value
Reference compression design value
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1153 \mathrm{psi}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi \mathrm{dc}$ * $\lambda{ }^{*} \mathrm{Cmq}^{*} \mathrm{Ctc}^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}_{\mathrm{C}}{ }^{*}\right) / \mathrm{c}$) $=\mathbf{0 . 3 3}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=4.125 \mathrm{ft}$
Shear wall aspect ratio
h / b = 2.768

Segmented shear wall capacity

Maximum shear force under seismic loading
$V_{s _\max }=E_{q}=2.04 \mathrm{kips}$
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 2.768
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$V_{s}=\phi \mathrm{D}$ * $\mathrm{V}_{\mathrm{s}}{ }^{*} \mathrm{~b}$ * $\left(1.25-0.125\right.$ * $\left.\mathrm{h} / \mathrm{b}_{\mathrm{s}}\right)=2.924 \mathrm{kips}$
$V_{s _m a x} / V_{s}=0.698$
PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=2.04 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\left.\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)-\mathrm{P}=5.646 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=418 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{C}_{\mathrm{Ft}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.259$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=2.04 \mathrm{kips}$
$P=\left(1.2\right.$ * ($\left.D+S_{w t}^{*} h\right)+0.2$ * $S_{d s}$ * $\left(D+S_{w t}^{*} h\right)++0.7$ * $\left.S\right)$ * $/ 2$ $=0.153 \mathrm{kips}$
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=5.799 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=351 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * ϕ_{c} * λ * $\mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{Cp}=\mathbf{1 0 5 0 \mathrm { lb } / \mathrm { in } ^ { 2 }}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 3 3 5}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 1				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=5.646 \mathrm{kips}$
$\mathrm{T}_{2}=5.646 \mathrm{kips}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=2.04 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.74 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=494.55 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\text {ss }}{ }^{*} \mathrm{~h}\right)=\mathbf{5 . 6 4 6} \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h * T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.626$ in
$C_{d \delta}=4$
$l_{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=2.503 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.914$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 2				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
Panel length
Total area of wall

$$
\mathrm{h}=10 \mathrm{ft}
$$

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
Cross-sectional area of studs
Stud spacing
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$

Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
2×2 " x 6 "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Service condition
Dry
Temperature
100 degF or less
Vertical anchor stiffness
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 2				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{Ga}_{\mathrm{a} 1}+\mathrm{G}_{\mathrm{a} 2}=\mathbf{4 0} \mathrm{kips} / \mathrm{in}$
Loading details
Dead load acting on top of panel $\quad \mathrm{D}=295 \mathrm{lb} / \mathrm{ft}$
Roof live load acting on top of panel $\quad \mathrm{Lr}_{r}=\mathbf{2 0 0} \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel $\quad \mathrm{S}=\mathbf{2 9 5} \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=7441 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{Sbs}^{\mathbf{~}} \mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L} f+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
\begin{aligned}
& K_{F E}=1.76 \\
& \phi t=0.80 \\
& \phi c=0.90
\end{aligned}
$$

Resistance factor for tension - Table N2 $\quad \phi t=\mathbf{0 . 8 0}$
Resistance factor for compression - Table N2
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 2				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for tension - Table 4A
$\mathrm{CFc}_{\mathrm{F}}=1.10$
Size factor for compression - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for tension - Table 4A
$С_{\mathrm{Mc}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ме }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{Ctc}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=\mathbf{1 . 0 0}$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\mathrm{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{Cl}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.41$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=7.292 \mathrm{ft}$
h / b = 1.371

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading
$\mathrm{V}_{\mathrm{s}_{2} \max }=\mathrm{E}_{\mathrm{q}}=7.441 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s}}=\phi \mathrm{D}{ }^{*} \mathrm{~V}_{\mathrm{sc}}{ }^{*} \mathrm{~b}=14.933 \mathrm{kips}$
$V_{s_{_} \max } / V_{s}=0.498$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$h / b=1.371$
$V=E_{q}=7.441 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=10.205 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{Aen}_{\mathrm{en}} \mathbf{7 5 6 \mathrm { lb } / \mathrm { in } ^ { 2 }}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 4 6 8}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression

$$
\mathrm{V}=\mathrm{E}_{\mathrm{q}}=7.441 \mathrm{kips}
$$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 2				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{D S}^{*}\left(D+S_{w t}^{*} h\right)++0.7$ * $\left.S\right)$ * $/ 2$
$=0.522 \mathrm{kips}$
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})+\mathrm{P}=\mathbf{1 0 . 7 2 7} \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=650 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}^{*} \mathrm{C}_{\mathrm{p}}=1318 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 4 9 3}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=10.205 \mathrm{kips}$
$\mathrm{T}_{2}=10.205 \mathrm{kips}$

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1

Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=7.441 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\text {ss }}=\mathrm{V}_{\text {os }} / \mathrm{b}=1020.48 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{v}_{\text {ss }}{ }^{*} \mathrm{~h}\right)=10.205 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+V_{\delta s}{ }^{*} h /(G a c)+h * T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.472$
in
$C_{d \delta}=4$
$l_{\mathrm{e}}=1$
$\delta_{\mathrm{sws}}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{le}=1.89 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.787$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 3				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
Panel length
Total area of wall

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Cross-sectional area of studs
Stud spacing
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$

Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$\mathrm{s}=16 \mathrm{in}$
2×2 " 6 "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Ae $=16.5 \mathrm{in}^{2}$
Dia $=1$ in
$A_{\text {en }}=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Dry
100 degF or less
Temperature
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$
Vertical anchor stiffness
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 3				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{Ga}_{\mathrm{a} 1}+\mathrm{G}_{\mathrm{a} 2}=\mathbf{4 0} \mathrm{kips} / \mathrm{in}$
Loading details
Dead load acting on top of panel $\quad \mathrm{D}=\mathbf{2 4 5 \mathrm { lb } / \mathrm { ft }}$
Roof live load acting on top of panel $\quad \mathrm{Lr}_{r}=164 \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel $\quad \mathrm{S}=\mathbf{2 4 5 \mathrm { lb } / \mathrm { ft }}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=6059 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L} f+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
\begin{aligned}
& K_{F E}=1.76 \\
& \phi t=0.80 \\
& \phi c=0.90
\end{aligned}
$$

Resistance factor for tension - Table N2 $\quad \phi t=\mathbf{0 . 8 0}$
Resistance factor for compression - Table N2
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 3				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for tension - Table 4A
$\mathrm{CFc}_{\mathrm{F}}=1.10$
Size factor for compression - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for tension - Table 4A
$С_{\mathrm{Mc}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ме }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{Ctc}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=\mathbf{1 . 0 0}$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\boldsymbol{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=\mathbf{0 . 4 1}$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=5.938 \mathrm{ft}$
h / b = 1.684

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading
$\mathrm{V}_{\mathrm{s}_{2} \max }=\mathrm{E}_{\mathrm{q}}=6.059 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s c}{ }^{*} b=12.16 \mathrm{kips}$
$V_{s_{_} \max } / V_{s}=0.498$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 1.684
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=6.059 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=10.205 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=756 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 4 6 8}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=6.059 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 3				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{D S}^{*}\left(D+S_{w t}^{*} h\right)++0.7$ * $\left.S\right)$ * $/ 2$
$=0.452 \mathrm{kips}$
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=\mathbf{1 0 . 6 5 7} \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=\mathbf{6 4 6} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * ϕ_{c} * λ * $\mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{Ctc}^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}^{*} \mathrm{C}_{\mathrm{p}}=1318 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 4 9 0}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=10.205 \mathrm{kips}$
$\mathrm{T}_{2}=10.205 \mathrm{kips}$

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1

Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=\mathbf{6 . 0 5 9 \mathrm { kips }}$
$\Delta_{\text {s_allow }}=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=1020.46 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{v}_{\text {ss }}{ }^{*} \mathrm{~h}\right)=10.205 \mathrm{kips}$

in
$\mathrm{C}_{\mathrm{d} \delta}=4$
$l_{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=2.088 \mathrm{in}$
$\delta_{\text {sws }} / \Delta_{\text {s_allow }}=0.87$

PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 5				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
Panel length
Total area of wall

Panel construction

Nominal stud size
2" x 4"
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
$\mathrm{s}=16$ in
$3 \times 2 " \times 4 "$
3×1.5 " x 3.5 "
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=11.25 \mathrm{in}^{2}$
2×2 " x 4"
$2 \times 1.5^{\prime \prime} \times 3.5$ "
Dry
100 degF or less
Temperature
Vertical anchor stiffness
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 5				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
Sheathing material
Fastener type

8d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
V_{s c}=2^{*} V_{s}=1960 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=2740 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{Ga} 1+\mathrm{Ga}_{\mathrm{a} 2}=\mathbf{3 0} \mathrm{kips} / \mathrm{in}$
Loading details
Dead load acting on top of panel $\quad \mathrm{D}=294 \mathrm{lb} / \mathrm{ft}$
Floor live load acting on top of panel
$\mathrm{Lf}=392 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=5802 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 D+W$
Load combination no. 5

$$
0.9 \mathrm{D}+\mathrm{E}
$$

Adjustment factors

Format conversion factor for tension - Table N1

$$
\mathrm{K}_{\mathrm{Ft}}=2.70
$$

Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{aligned} & \text { Job Ref. } \\ & 8119 \end{aligned}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 5				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Sheathing resistance factor	$\phi D=\mathbf{0 . 8 0}$
Size factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 5 0}$
Size factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Fc}}=\mathbf{1 . 1 5}$
Wet service factor for tension - Table 4A	$\mathrm{C}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$

Wet service factor for modulus of elasticity - Table 4A
$C_{M E}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{\text {tE }}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}_{\mathrm{i}}=\mathbf{1 . 0 0}$

Adjusted modulus of elasticity
$\mathrm{C} T=1.00$

Critical buckling design value
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$

Reference compression design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=\mathbf{6 6 0} \mathrm{psi}$

For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}_{\mathrm{c}}{ }^{*} \phi_{\mathrm{c}}$ * λ * $\mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{C}}{ }^{*}\right) / \mathrm{c}\right)=\mathbf{0 . 1 9}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
3.5
$\mathrm{b}=6.188 \mathrm{ft}$
h / b = 1.552
$V_{s_{_} \max }=E_{q}=5.802 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s c}{ }^{*} b=9.702$ kips
$V_{s_{-} \max } / V_{s}=0.598$
PASS - Shear capacity for seismic load exceeds maximum shear force
$h / b=1.552$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.802 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})-\mathrm{P}=9.002 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{8 0 0} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.430$
PASS - Design tensile stress exceeds maximum applied tensile stress
$V=E_{q}=5.802 \mathrm{kips}$
$P=\left(1.2\right.$ * $\left(D+S_{w t}{ }^{*} h\right)+0.2$ * $S_{d s}^{*}\left(D+S_{w t}^{*} h\right)+0.5$ * $\left.L_{f}\right)$ * $\mathrm{s} / 2=$
0.51 kips

S Tekla.Tedds Fast + Epp				Project 323 Dean Street, Suite \#3 Brooklyn, NY 11217			Yaroslavsky Residence

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress

$$
\begin{aligned}
& \mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=9.511 \mathrm{kips} \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{Ae}_{\mathrm{e}}=604 \mathrm{lb} / \mathrm{in}^{2} \\
& \mathrm{~F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}} * \lambda{ }^{*} \mathrm{Cmc}^{*} \mathrm{Ctc}_{\mathrm{tc}} * \mathrm{CFc}^{*} \mathrm{Ci}^{*} \mathrm{Cp}_{\mathrm{p}}=\mathbf{6 3 1 \mathrm { lb } / \mathrm { in } ^ { 2 }} \\
& \mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}^{\prime}}=0.957
\end{aligned}
$$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=9.002 \mathrm{kips}$
$\mathrm{T}_{2}=9.002 \mathrm{kips}$

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1

Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{E}_{\mathrm{q}}=5.802 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.304 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\mathrm{\delta s}} / \mathrm{b}=937.7 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=9.002 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} v_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+v_{\delta s}{ }^{*} h /(G a c)+h * T_{\delta} /\left(k_{a}^{*} b\right)=0.517$
in
$\mathrm{C}_{\text {d }}=4$
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d}}{ }^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=2.069 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s allow $=0.898$

PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 6				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height

Panel construction

Nominal stud size
2" x 4"
Dressed stud size
$1.5^{\prime \prime} \times 3.5^{\prime \prime}$
Cross-sectional area of studs
Stud spacing
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$

Nominal end post size
$\mathrm{s}=16$ in

Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
$3 \times 2 " \times 4 "$
$3 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=11.25 \mathrm{in}^{2}$
2×2 " 4 4"
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
Dry
100 degF or less
Temperature
Vertical anchor stiffness
$\mathrm{ka}=\mathbf{8 0 0 0 0} \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
Sheathing material
Fastener type

8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{Vs}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
V_{s c}=2^{*} V_{s}=1960 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=2740 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{Ga} 1+\mathrm{Ga}_{\mathrm{a} 2}=\mathbf{3 0} \mathrm{kips} / \mathrm{in}$
Loading details
Dead load acting on top of panel
$\mathrm{D}=\mathbf{2 3 1 . 2 5 \mathrm { lb } / \mathrm { ft }}$
Floor live load acting on top of panel
$\mathrm{Lf}_{\mathrm{f}}=309 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=6778 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{S}_{\mathrm{ds}}=\mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5

$$
0.9 \mathrm{D}+\mathrm{E}
$$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=\mathbf{2 . 7 0}$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 6				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Sheathing resistance factor	$\phi D=\mathbf{0 . 8 0}$
Size factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 5 0}$
Size factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Fc}}=\mathbf{1 . 1 5}$
Wet service factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A	$\mathrm{Cmc}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$

Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{\text {tE }}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}_{\mathrm{i}}=1.00$

Adjusted modulus of elasticity
$\mathrm{C} \boldsymbol{T}=1.00$

Critical buckling design value
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=674 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}_{\mathrm{c}}{ }^{*} \mathrm{\phi c}^{*}{ }^{*}{ }^{*} \mathrm{Cmq}_{\mathrm{c}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{C}\right)=\mathbf{0 . 1 9}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
3.5

Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
$\mathrm{b}=7.062 \mathrm{ft}$
h / b = 1.345
$V_{s_{_} \max }=E_{q}=6.778 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s}}=\phi \mathrm{D}$ * $\mathrm{V}_{\mathrm{sc}}{ }^{*} \mathrm{~b}=11.074 \mathrm{kips}$
$V_{s-\max } / V_{s}=0.612$
PASS - Shear capacity for seismic load exceeds maximum shear force
$h / b=1.345$
$V=E_{q}=6.778 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})-\mathrm{P}=9.117 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{8 1 0} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.435$
PASS - Design tensile stress exceeds maximum applied tensile stress
$V=E_{q}=6.778 \mathrm{kips}$
$P=\left(1.2\right.$ * $\left(D+S_{w t}{ }^{*} h\right)+0.2$ * $S_{d s}^{*}\left(D+S_{w t}^{*} h\right)+0.5$ * $\left.L_{f}\right)$ * $\mathrm{s} / 2=$
0.423 kips

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 6				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress

$$
\begin{aligned}
& \mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=9.540 \mathrm{kips} \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{Ae}_{\mathrm{e}}=606 \mathrm{lb} / \mathrm{in}^{2} \\
& \mathrm{~F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}} * \lambda * \mathrm{CMc}^{*} \mathrm{Ctc}_{\mathrm{tc}}^{*} \mathrm{CFc}_{\mathrm{cc}}^{*} \mathrm{Ci}^{*} \mathrm{CP}_{\mathrm{P}}=\mathbf{6 4 4 \mathrm { lb } / \mathrm { in } ^ { 2 }} \\
& \mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 9 4 1}
\end{aligned}
$$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=9.117 \mathrm{kips}$
$\mathrm{T}_{2}=9.117 \mathrm{kips}$

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1

Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15

Cd $=4$
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{E}_{\mathrm{q}}=6.778 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.28 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=959.72 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=9.117 \mathrm{kips}$
$\delta_{\text {swse }}=2$ * $V_{\text {ss }}{ }^{*} h^{3} /\left(3^{*} E * A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a c}\right)+h * T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.494$
in
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d}}{ }^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=1.977 \mathrm{in}$
$\delta_{\text {sws }} / \Delta \mathrm{s}$ allow $=0.867$

PASS - Shear wall deflection is less than deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 7				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method
Tedds calculation version 1.2.04

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=10 \mathrm{ft}$
Panel length
Total area of wall
$b=13.354 \mathrm{ft}$
$A=h * b=133.542 \mathrm{ft}^{2}$
D $+L_{\text {f }}$
$\downarrow \downarrow \downarrow$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" $\times 6$ "
$1.5 " \times 5.5 "$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16$ in
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=\mathbf{8 0 0 0 0} \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 7				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
Sheathing material
Fastener type

8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Dead load acting on top of panel
$\mathrm{D}=60 \mathrm{lb} / \mathrm{ft}$
Floor live load acting on top of panel
$\mathrm{Lf}=80 \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=5980 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{Sbs}_{\mathrm{o}} \mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}
$$

Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi \mathrm{c}=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$\mathrm{CFc}_{\mathrm{F}}=1.10$
Wet service factor for tension - Table 4A
$C_{m t}=1.00$
Wet service factor for compression - Table 4A
$С_{\text {мс }}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A

$$
\text { Сме = } 1.00
$$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 7				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}$ * $\mathrm{K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{c}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.41$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
3.5

Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
$h / b=0.749$
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$b=13.354 \mathrm{ft}$
h / b = 0.749
$V_{\text {s_max }}=\mathrm{E}_{\mathrm{q}}=5.98$ kips
$V_{s}=\phi \mathrm{D}{ }^{*} \mathrm{Vs}_{\mathrm{s}}{ }^{*} \mathrm{~b}=10.47 \mathrm{kips}$
$V_{s_{-} \max } / V_{s}=0.571$
PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.98 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{b})-\mathrm{P}=4.478 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=332 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*} \mathrm{tt}^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.205$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.98 \mathrm{kips}$
$P=\left(1.2\right.$ * $\left(D+S_{w t}\right.$ * $\left.h\right)+0.2$ * $S_{b s}^{*}\left(D+S_{w t}\right.$ * $\left.h\right)+0.5$ * $\left.L_{f}\right)$ * $s / 2=$ 0.193 kips
$\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})+\mathrm{P}=4.671 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=\mathbf{2 8 3} \mathrm{lb} / \mathrm{in}^{2}$

$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}=\mathbf{0 . 2 1 5}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
$\mathrm{T}_{1}=4.478 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 7				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15

$\mathrm{T}_{2}=4.478 \mathrm{kips}$

$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=5.98 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\text {ss }} / \mathrm{b}=447.8 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=4.478 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h * T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.351 \mathrm{in}$
$C_{d \delta}=4$
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=1.402$ in
$\delta_{\text {sws }} / \Delta$ s_allow $=\mathbf{0 . 5 8 4}$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 8				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/19/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=10 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=4.896 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=48.958 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 8				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 19 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=1140 \mathrm{lbs}$
Design spectral response accel. par., short periods
Sds $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=\mathbf{2 . 7 0}$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A
$\mathrm{C}_{\mathrm{Fc}}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
$С_{м с}=1.00$
Wet service factor for modulus of elasticity - Table 4A
$C_{\text {ME }}=\mathbf{1 . 0 0}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 8				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/19/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$E_{m i n}{ }^{\prime}=E_{\text {min }}{ }^{*} K_{\text {fe }}{ }^{*} \phi_{s}{ }^{*} \mathrm{C}_{\text {me }}{ }^{*} \mathrm{C}_{\mathrm{te}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=870000 \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * $\mathrm{qc}^{*} \lambda^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.41$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=4.896 \mathrm{ft}$
Shear wall aspect ratio
h / b = 2.043

Segmented shear wall capacity

Maximum shear force under seismic loading
$V_{\text {s_max }}=E_{q}=1.14 \mathrm{kips}$
Shear capacity for seismic loading
$V_{s}=\phi D^{*} V_{s}{ }^{*} \mathrm{~b}^{*}(1.25-0.125$ * $\mathrm{h} / \mathrm{bs})=3.818 \mathrm{kips}$
$V_{s_{_} \max } / V_{s}=0.299$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 2.043
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$V=E_{q}=1.14 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{b})-\mathrm{P}=2.329 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{1 7 2 \mathrm { lb } / \mathrm { in } ^ { 2 }}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*}{ }^{*}{ }^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 1 0 7}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=1.14 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * $\left.S_{b s}^{*} S_{w t}^{*} h\right)$ * $/ 2=0.111$ kips
Maximum compressive force in chord
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})+\mathrm{P}=2.440 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=148 \mathrm{lb} / \mathrm{in}^{2}$

$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 1 1 2}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
$\mathrm{T}_{1}=2.329 \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=2.329 \mathrm{kips}$

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 8				Sheet no./rev.4	
	Calc. by BJW	$\begin{aligned} & \text { Date } \\ & \text { 2/19/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$V_{\delta s}=E_{q}=1.14 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=232.85 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{v}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=\mathbf{2 . 3 2 9} \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\text {is }}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.229$ in
$C_{d \delta}=4$
$l_{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{le}=0.916$ in
$\delta_{\text {sws }} / \Delta$ s_allow $=0.382$
PASS - Shear wall deflection is less than deflection limit

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 9				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/22/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides

Panel height	$h=\mathbf{1 0 ~ f t}$
Panel length	$b=\mathbf{1 1} \mathrm{ft}$
Total area of wall	$A=h^{*} b=\mathbf{1 1 0} \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 4 "
$1.5 " \times 3.5 "$
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
$s=16$ in
$3 \times 2 " \times 4 "$
3×1.5 " x 3.5 "
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=11.25 \mathrm{in}^{2}$
$2 \times 2 " \times 4^{\prime \prime}$
2×1.5 " x $3.5^{\prime \prime}$
Dry
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 9				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2{ }^{*} \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $G_{a c}=G_{a 1}+G_{a} 2=40$ kips/in
Loading details
Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=9492.3 \mathrm{lbs}$
Design spectral response accel. par., short periods
$S_{D S}=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 D+1.6(\mathrm{Lr}$ or S or $R)+0.5 W$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi \mathrm{c}=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 9				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Sheathing resistance factor	$\phi D=\mathbf{0 . 8 0}$
Size factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 5 0}$
Size factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Fc}}=\mathbf{1 . 1 5}$
Wet service factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$

Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ct}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}_{\mathrm{i}}=1.00$

Adjusted modulus of elasticity
$\mathrm{C} \boldsymbol{T}=1.00$

Critical buckling design value
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$

Reference compression design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=\mathbf{6 0 8} \mathrm{psi}$

For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
$\mathrm{C}=0.8$
$C_{P}=\left(1+\left(F_{C E} / F_{c^{*}}\right)\right) /(2 \times c)-\sqrt{ }\left(\left[\left(1+\left(F_{C E} / F_{c^{*}}\right)\right) /(2 \times c)\right]^{2}-\left(F_{C E} /\right.\right.$
$\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}$) $=\mathbf{0 . 1 7}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading
3.5
$\mathrm{b}=11 \mathrm{ft}$
h / b = 0.909
$V_{s_{_} \max }=E_{q}=9.492 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s c}{ }^{*} \mathrm{~b}=22.528 \mathrm{kips}$
$V_{s_{-} \max } / V_{s}=0.421$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
$h / b=0.909$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=9.492 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})-\mathrm{P}=8.629 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=767 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 4 1 2}$
PASS - Design tensile stress exceeds maximum applied tensile stress
$V=E_{q}=9.492 \mathrm{kips}$
$P=\left(1.2\right.$ * $\mathrm{S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}+0.2$ * $\left.\mathrm{S}_{\mathrm{ds}}{ }^{*} \mathrm{~S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}\right)$ * $\mathrm{s} / 2=0.111 \mathrm{kips}$
$C=V$ * $h /(b)+P=8.740$ kips

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 9				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Maximum applied compressive stress	$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=555 \mathrm{lb} / \mathrm{in}^{2}$
Design compressive stress	$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi \mathrm{Cc} *{ }^{*} \mathrm{Cmc}^{*} \mathrm{C}_{\mathrm{tc}} * \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{P}}=584 \mathrm{lb} / \mathrm{in}^{2}$
	$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}_{\mathrm{c}}=\mathbf{0 . 9 5 1}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1

Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=8.629 \mathrm{kips}$
$\mathrm{T}_{2}=8.629 \mathrm{kips}$
$\mathrm{V}_{\delta s}=\mathrm{E}_{q}=9.492 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=862.94 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\mathrm{s}}{ }^{*} \mathrm{~h}\right)=8.629 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\text {ss }}{ }^{*} h^{3} /\left(3^{*} E * A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a c}\right)+h{ }^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.339$
in
$C_{d \delta}=4$
$l_{\mathrm{e}}^{\mathrm{e}}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.355 \mathrm{in}$
δ sws $/ \Delta_{\text {s allow }}=0.564$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 10				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/22/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
$\mathrm{h}=10 \mathrm{ft}$
Panel length
Total area of wall
$b=5.833 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=58.333 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 6"
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Ae $=16.5 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	SectionWood Shear Wall - Supp. Upper Level Wall 10				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2{ }^{*} \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $G_{a c}=G_{a 1}+G_{a} 2=40$ kips/in
Loading details
Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=5034 \mathrm{lbs}$
Design spectral response accel. par., short periods
$S_{D S}=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 D+1.6(\mathrm{Lr}$ or S or $R)+0.5 W$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi \mathrm{c}=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	SectionWood Shear Wall - Supp. Upper Level Wall 10				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Sheathing resistance factor	$\phi D=\mathbf{0 . 8 0}$
Size factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Fc}}=\mathbf{1 . 1 0}$
Wet service factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$

Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C} \boldsymbol{T}=1.00$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*}{ }_{\phi c}$ * λ * $\mathrm{Cmc}^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}$) $=\mathbf{0 . 4 1}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
$h / b=1.714$
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
3.5
$\mathrm{b}=5.833 \mathrm{ft}$
h / b = 1.714
$V_{s_{-} \max } / V_{s}=0.421$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.034 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.396$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.034 \mathrm{kips}$
$V_{s_{_} \max }=E_{q}=5.034 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s c}{ }^{*} b=11.947 \mathrm{kips}$

PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})-\mathrm{P}=8.630 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{6 3 9 \mathrm { lb } / \mathrm { in } ^ { 2 }}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi_{\mathrm{t}}{ }^{*} \lambda{ }^{*} \mathrm{Cmt}^{*} \mathrm{Ctt}^{*}{ }^{*} \mathrm{Cft}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress
$\mathrm{P}=\left(1.2\right.$ * $\mathrm{S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}+0.2$ * $\left.\mathrm{Sos}^{*} \mathrm{~S}_{\mathrm{wt}}{ }^{*} \mathrm{~h}\right){ }^{*} \mathrm{~s} / 2=0.111 \mathrm{kips}$
$C=V^{*} h /(b)+P=8.741 \mathrm{kips}$

S Tekla.Tedds Fast + Epp				Project 323 Dean Street, Suite \#3 Brooklyn, NY 11217			Yaroslavsky Residence

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 11				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 22 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side

Panel height	$h=\mathbf{1 0 f t}$
Panel length	$b=\mathbf{1 1 f t}$
Total area of wall	$A=h * b=\mathbf{1 1 0} \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 6"
$1.5 " \times 5.5$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16$ in
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1$ in
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 11				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=4930 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=\mathbf{2 . 7 0}$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A
$\mathrm{C}_{\mathrm{Fc}}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
$С_{м с}=1.00$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	SectionWood Shear Wall - Supp. Upper Level Wall 11				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}$ * $\mathrm{K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{c}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.41$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=\mathbf{1 1} \mathrm{ft}$
Shear wall aspect ratio
h / b $=0.909$
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{s_{_} m a x}=E_{q}=4.93 \mathrm{kips}$
Shear capacity for seismic loading
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=8.624$ kips
$V_{s_{_} \max } / V_{s}=0.572$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 0.909
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.93 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=4.482 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=332 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*} \phi^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.206$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.93 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * $\left.S_{b s}{ }^{*} S_{w t}^{*} h\right)$ * $/ 2=0.111$ kips
$\left.\mathrm{C}=\mathrm{V}^{*} \mathrm{~h} / \mathrm{b}\right)+\mathrm{P}=4.593 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=\mathbf{2 7 8} \mathrm{lb} / \mathrm{in}^{2}$

$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 2 1 1}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=4.482 \mathrm{kips}$
$\mathrm{T}_{2}=4.482 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 11				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=4.93 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\text {ঠs }} / \mathrm{b}=448.18 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=4.482 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\text {ss }}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.362$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.448 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=\mathbf{0 . 6 0 3}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 12				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method
Tedds calculation version 1.2.04

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=12 \mathrm{ft}$
Panel length
$\mathrm{b}=29 \mathrm{ft}$
Total area of wall
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=348 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" $\times 6$ "
1.5 " 5.5 "
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$s=16$ in
2×2 " $\times 6$ "
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	SectionWood Shear Wall - Supp. Upper Level Wall 12				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity

Sheathing details

Sheathing material
Fastener type
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing 8d common nails at 3"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design
$\mathrm{V}_{\mathrm{w}}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$
Loading details
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=4060 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{Sbs}_{\boldsymbol{=}} \mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2 $\quad \phi t=0.80$
Resistance factor for compression - Table N2 $\quad \phi c=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.30$
Size factor for compression - Table 4A
$C_{F c}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
Смс $=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
Сме $=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	SectionWood Shear Wall - Supp. Upper Level Wall 12				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Incising factor - cl.4.3.8
Buckling stiffness factor - cl.4.4.2
Adjusted modulus of elasticity
Critical buckling design value
Reference compression design value
For sawn lumber
Column stability factor - eqn.3.7-1

$$
\begin{aligned}
& C_{t E}=1.00 \\
& \mathrm{C}_{\mathrm{i}}=1.00 \\
& \mathrm{C}_{\top}=\mathbf{1 . 0 0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1043 \mathrm{psi} \\
& \mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*}{ }_{\phi \mathrm{c}} \text { * } \lambda \text { * } \mathrm{Cmq}^{*} \mathrm{Ctc}^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi} \\
& \mathrm{C}=0.8 \\
& \mathrm{Cl}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right. \\
& \left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c} \text {) }=\mathbf{0 . 3 0}
\end{aligned}
$$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=29 \mathrm{ft}$
Shear wall aspect ratio
h / b = 0.414

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2
Shear wall aspect ratio
$h / b=0.414$
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.06 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=1.680 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=124 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{Ctt}^{*} \mathrm{C}_{\mathrm{Ft}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}=\mathbf{1 6 1 5 \mathrm { lb } / \mathrm { in } ^ { 2 }}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.077$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s _\max }=E_{q}=4.06 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=22.736$ kips
$V_{s _m a x} / V_{s}=0.179$
PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=4.06 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * Sos * $_{\text {* }}{ }^{*}$ * h) * s / $2=0.133$ kips
$C=V^{*} h /(b)+P=1.813 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=110 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{c}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}^{*}{ }^{*} \mathrm{Cp}=961 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 1 1 4}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord $1 \quad \mathrm{~T}_{1}=\mathbf{1 . 6 8} \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=1.68 \mathrm{kips}$

Seismic deflection

Design shear force
Deflection limit
$V_{\delta s}=E_{q}=4.06 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.88 \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 12				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}} / \mathrm{b}=140 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{~V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=\mathbf{1 . 6 8 0} \mathrm{kips} \\
& \delta_{\text {swse }}=2 \text { * } V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.123 \text { in } \\
& \mathrm{C} d \delta=4 \\
& l_{e}=1 \\
& \delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=\mathbf{0 . 4 9 3} \mathrm{in} \\
& \delta \text { sws } / \Delta_{\text {s_allow }}=0.171
\end{aligned}
$$

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Upper Level Wall 13				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/23/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
$\mathrm{h}=10 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=4.583 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=45.833 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
2" x 6"
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness
$1.5 " \times 5.5 "$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$3 \times 2 " \times 6 "$
3×1.5 " $\times 5.5$ "
Ae $=24.75$ in 2
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=20.25$ in 2
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=84000 \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 13				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
10d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1540 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=\mathbf{2 1 5 5} \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=23 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=3080 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2{ }^{*} \mathrm{~V}_{\mathrm{w}}=4310 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $G_{a c}=G_{a 1}+G_{a} 2=46$ kips/in
Loading details
Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=6190 \mathrm{lbs}$
Design spectral response accel. par., short periods
$S_{D S}=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 D+1.6(\mathrm{Lr}$ or S or $R)+0.5 W$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
K_{F t}=2.70
$$

Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi \mathrm{c}=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi s=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Upper Level Wall 13				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Sheathing resistance factor	$\phi D=\mathbf{0 . 8 0}$
Size factor for tension - Table 4A	$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A	$\mathrm{C}_{F \mathrm{c}}=\mathbf{1 . 1 0}$
Wet service factor for tension - Table 4A	$\mathrm{C}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A	$\mathrm{C}_{\mathrm{Mc}}=\mathbf{1 . 0 0}$

Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C} \boldsymbol{T}=1.00$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1502 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{KFc}^{*}{ }^{*} \mathrm{\phi c}^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}$) $=\mathbf{0 . 4 1}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
3.5
$\mathrm{b}=4.583 \mathrm{ft}$
h / b = 2.182
$V_{s _\max }=E_{q}=6.19 \mathrm{kips}$
$V_{s}=\phi D^{*} V_{s c}{ }^{*} b$ * (1.25-0.125 *h / bs) $=11.037 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s} \text { _max }} / \mathrm{V}_{\mathrm{s}}=0.561$
PASS - Shear capacity for seismic load exceeds maximum shear force
h / b=2.182
$V=E_{q}=6.19 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b})-\mathrm{P}=\mathbf{1 3 . 5 0 6} \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=667 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi_{\mathrm{t}}{ }^{*} \lambda{ }^{*} \mathrm{Cmt}^{*} \mathrm{Ctt}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.413$
PASS - Design tensile stress exceeds maximum applied tensile stress
$V=E_{q}=6.19 \mathrm{kips}$

$C=V^{*} h /(b)+P=13.617 \mathrm{kips}$

S Tekla.Tedds Fast + Epp				Project 323 Dean Street, Suite \#3 Brooklyn, NY 11217			Yaroslavsky Residence

Maximum applied compressive stress	$\mathrm{fc}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=550 \mathrm{lb} / \mathrm{in}^{2}$
Design compressive stress	
	$\mathrm{fc}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 4 1 7}$
	ign compressive stress exceeds maximum applied compressive stress
Hold down force	
Chord 1	$\mathrm{T}_{1}=13.506 \mathrm{kips}$
Chord 2	$\mathrm{T}_{2}=13.506 \mathrm{kips}$
Seismic deflection	
Design shear force	$\mathrm{V}_{\delta s}=\mathrm{E}_{\mathrm{q}}=6.19 \mathrm{kips}$
Deflection limit	$\Delta \mathrm{s}$ _allow $=0.020$ * $\mathrm{h}=2.4 \mathrm{in}$
Induced unit shear	$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {is }} / \mathrm{b}=1350.56 \mathrm{lb} / \mathrm{ft}$
Anchor tension force	$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{v}_{\text {ss }}{ }^{*} \mathrm{~h}\right)=13.506 \mathrm{kips}$
Shear wall elastic deflection - Eqn. 4.3-1	$\begin{aligned} & \delta_{\text {swse }}=2^{*} v_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}^{*} b\right)+v_{\delta s} * h /\left(G_{a c}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.704 \\ & \text { in } \end{aligned}$
Deflection ampification factor	$\mathrm{C}_{\mathrm{d} \delta}=4$
Seismic importance factor	$\mathrm{l}=1$
Amp. seis. deflection - ASCE7 Eqn. 12.8-15	$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{l} \mathrm{l}_{\mathrm{e}}=2.816$ in
	δ sws $/ \Delta_{\text {s_allow }}=1.173$

FAIL - Shear wall deflection exceeds deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 3				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
$b=13.646 \mathrm{ft}$
Total area of wall

$$
A=h^{*} b=130.488 \mathrm{ft}^{2}
$$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 4"
1.5 " x 3.5 "

As $=5.25 \mathrm{in}^{2}$
$s=16$ in
3×2 " $\times 4$
3×1.5 " $\times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=11.25 \mathrm{in}^{2}$
$2 \times 2 " \times 4 "$
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
Dry
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=80000 \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 3				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
Sheathing material
Fastener type

8 d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{Ga} 1+\mathrm{Ga}_{\mathrm{a} 2}=\mathbf{4 0} \mathrm{kips} / \mathrm{in}$
Loading details
Dead load acting on top of panel $\quad \mathrm{D}=\mathbf{2 0 0} \mathrm{lb} / \mathrm{ft}$
Floor live load acting on top of panel $\quad \mathrm{Lf}=\mathbf{4 0 0} \mathrm{lb} / \mathrm{ft}$
Snow load acting on top of panel $\quad S=\mathbf{2 0 0} \mathrm{lb} / \mathrm{ft}$
Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel $\quad \mathrm{E}_{\mathrm{q}}=19100 \mathrm{lbs}$
Design spectral response accel. par., short periods $\mathrm{Sbs}^{\mathbf{~}} \mathbf{0 . 9 4 4}$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L} f+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
\mathrm{K}_{\mathrm{Ft}}=2.70
$$

Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1

$$
\begin{aligned}
& K_{F E}=1.76 \\
& \phi t=\mathbf{0 . 8 0} \\
& \phi c=\mathbf{0 . 9 0}
\end{aligned}
$$

Resistance factor for tension - Table N2 $\quad \phi t=\mathbf{0 . 8 0}$
Resistance factor for compression - Table N2
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 3				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
$\mathrm{C}_{\mathrm{Ft}}=1.50$
$\mathrm{CFc}_{\mathrm{F}}=1.15$
$\mathrm{Cmt}_{\mathrm{Mt}}=1.00$
$\mathrm{Cm}_{\mathrm{c}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {Сme }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{Ctt}_{\mathrm{t}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{Ctc}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$C_{i}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=1.00$
Adjusted modulus of elasticity

Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=665 \mathrm{psi}$
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * $\phi \mathrm{c}$ * λ * $\mathrm{Cmc}^{*}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
$\mathrm{C}=0.8$
$\mathrm{CP}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{C}\right)=0.19$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$b=13.646 \mathrm{ft}$
h / b = 0.701

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$V_{\text {s_max }}=E_{q}=19.1 \mathrm{kips}$
$V_{s}=\phi \mathrm{D}{ }^{*} V_{s c}{ }^{*} \mathrm{~b}=27.947 \mathrm{kips}$
$V_{\text {s_max }} / V_{s}=0.683$
PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{h} / \mathrm{b}=0.701$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=19.1 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=13.385 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=1190 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{C}_{\mathrm{Ft}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.639$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=19.1 \mathrm{kips}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 3				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Axial force for maximum compression

Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$P=\left(1.2\right.$ * $\left(D+S_{w t}^{*} h\right)+0.2$ * $S_{d s}^{*}\left(D+S_{w t}^{*} h\right)+0.5$ * $L f+0.7$ * $\left.S\right)$

* $\mathrm{s} / 2=0.518 \mathrm{kips}$
$C=V^{*} h /(b)+P=13.903$ kips
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=883 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}^{*} \mathrm{Cp}_{\mathrm{P}}=636 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{1 . 3 8 9}$
FAIL - Design compressive stress is less than maximum applied compressive stress

Hold down force

Chord 1
Chord 2
Seismic deflection
Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=13.385 \mathrm{kips}$
$\mathrm{T}_{2}=13.385 \mathrm{kips}$
$V_{\delta s}=E_{q}=19.1 \mathrm{kips}$
Δ_{s} _allow $=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {os }} / \mathrm{b}=1399.7 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{v}_{\text {ss }}{ }^{*} \mathrm{~h}\right)=13.385 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /(G a c)+h * T_{\delta} /\left(k_{a}^{*} b\right)=0.48$ in
$\mathrm{C}_{\mathrm{d} \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.921 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.837$

PASS - Shear wall deflection is less than deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 4				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method
Tedds calculation version 1.2.04

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=20.146 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=192.644 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
2" x 4"
Dressed stud size
1.5" x $3.5^{\prime \prime}$

Cross-sectional area of studs
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
Stud spacing
$\mathrm{s}=16$ in
Nominal end post size
2×2 " $\times 4$ "
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=10.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1$ in

Nominal collector size
Dressed collector size
Aen $=7.5$ in 2

Service condition
2×2 " $\times 4$ "
$2 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$

Temperature
Dry

Vertical anchor stiffness
100 degF or less
$\mathrm{k}_{\mathrm{a}}=\mathbf{3 5 0 0 0} \mathrm{lb} / \mathrm{in}$
From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider
Specific gravity
$G=0.50$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 4				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity

Sheathing details

Sheathing material
Fastener type
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 3 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{vs}=980 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad V_{w}=1370 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=15 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=8760 \mathrm{lbs}$
Design spectral response accel. par., short periods
Sds $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 D+E+0.5 L f+0.7 S$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
\mathrm{K}_{\mathrm{Ft}}=2.70
$$

Format conversion factor for compression - Table N1

$$
\mathrm{K}_{\mathrm{Fc}}=2.40
$$

Format conversion factor for modulus of elasticity - Table N1
$\mathrm{K}_{\mathrm{ff}}=1.76$
Resistance factor for tension - Table N2
Resistance factor for compression - Table N2
$\phi t=0.80$
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
Size factor for tension - Table 4A
$\phi \mathrm{D}=0.80$

Size factor for compression - Table 4A
$\mathrm{CFt}_{\mathrm{Ft}}=1.50$

Wet service factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Fc}}=1.15$
$-\mathrm{Cmt}^{2} \mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A $\quad \mathrm{C}_{\mathrm{mc}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ме }}=1.00$
Temperature factor for tension - Table 2.3.3
$\mathrm{C}_{\mathrm{tt}}=1.00$
Temperature factor for compression - Table 2.3.3

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 4				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\boldsymbol{T}}=1.00$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{Emin}^{*} \mathrm{~K}_{\mathrm{fe}}{ }^{*} \phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{te}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=870000 \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=\mathbf{6 6 5} \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * ${ }_{\mathrm{qc}}$ * λ * $\mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
For sawn lumber
$\mathrm{C}=0.8$
Column stability factor - eqn.3.7-1
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}^{*}{ }^{*}\right) / \mathrm{c}\right)=0.19$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=20.146 \mathrm{ft}$
Shear wall aspect ratio
h / b = 0.475

Segmented shear wall capacity

Maximum shear force under seismic loading
Shear capacity for seismic loading

Chord capacity for chords 1 and 2
Shear wall aspect ratio
h / b = 0.475
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$V=E_{q}=8.76 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}^{*} \mathrm{~h} /(\mathrm{b})-\mathrm{P}=4.158 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=554 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}_{\mathrm{t}}{ }^{*} \mathrm{Kft}^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{mt}}{ }^{*} \mathrm{Ctt}^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=0.298$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s _\max }=E_{q}=8.76 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s}}=\phi \mathrm{D}^{*} \mathrm{~V}_{\mathrm{s}}{ }^{*} \mathrm{~b}=15.794 \mathrm{kips}$
$V_{s _ \text {max }} / V_{s}=0.555$
PASS - Shear capacity for seismic load exceeds maximum shear force

PASS (
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=8.76 \mathrm{kips}$
$P=\left(1.2{ }^{*} S_{w t}{ }^{*} h+0.2\right.$ * Sps $\left.^{*} S_{w t}^{*} h\right) *$ s $/ 2=0.106$ kips
$C=V^{*} h /(b)+P=4.264 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=406 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda$ * $\mathrm{Cmc}^{*}{ }^{*} \mathrm{Ctc}^{*}{ }^{*} \mathrm{CFc}^{*}{ }^{*} \mathrm{Ci}^{*} \mathrm{Cr}_{\mathrm{c}}=636 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 6 3 9}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord $1 \quad \mathrm{~T}_{1}=4.158 \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=4.158 \mathrm{kips}$

Seismic deflection

Design shear force
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=8.76 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 4				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\Delta_{\text {s_allow }}=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{V}_{\mathrm{\delta s}} / \mathrm{b}=434.83 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=4.158 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.343$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{le}_{\mathrm{e}}=1.37 \mathrm{in}$
δ sws $/ \Delta_{\text {s_allow }}=\mathbf{0 . 5 9 7}$
PASS - Shear wall deflection is less than deflection limit

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 5				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on both sides
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
Total area of wall
$b=13.812 \mathrm{ft}$
$A=h * b=132.082 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" $\times 6$ "
$1.5 " \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Dry
100 degF or less
$\mathrm{ka}=80000 \mathrm{lb} / \mathrm{in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 5				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
$\mathrm{G}=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8 d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Combined unit shear capacities

Combined nominal unit shear capacity for seismic design

$$
\mathrm{V}_{\mathrm{sc}}=2^{*} \mathrm{~V}_{\mathrm{s}}=2560 \mathrm{lb} / \mathrm{ft}
$$

Combined nominal unit shear capacity for wind design

$$
\mathrm{V}_{\mathrm{wc}}=2 * \mathrm{~V}_{\mathrm{w}}=3580 \mathrm{lb} / \mathrm{ft}
$$

Combined apparent shear wall shear stiffness $\mathrm{Gac}_{\mathrm{ac}}=\mathrm{G}_{\mathrm{a} 1}+\mathrm{Ga}_{\mathrm{a} 2}=\mathbf{4 0} \mathrm{kips} / \mathrm{in}$
Loading details
Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=22260 \mathrm{lbs}$
Design spectral response accel. par., short periods
Sbs $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}_{\mathrm{f}}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}_{\mathrm{f}}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1

$$
\mathrm{K}_{\mathrm{Ft}}=2.70
$$

Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1

$$
\mathrm{K}_{\mathrm{FE}}=1.76
$$

Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2 $\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2

$$
\phi_{s}=0.85
$$

Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 5				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/23/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

$$
\begin{array}{ll}
\text { Size factor for compression - Table 4A } & \mathrm{C}_{\mathrm{Fc}}=\mathbf{1 . 1 0} \\
\text { Wet service factor for tension }- \text { Table 4A } & \mathrm{C}_{\mathrm{Mt}}=\mathbf{1 . 0 0} \\
\text { Wet service factor for compression - Table 4A } & \mathrm{C}_{\mathrm{Mc}}=\mathbf{1 . 0 0} \\
\text { Wet service factor for modulus of elasticity }- \text { Table } 4 \mathrm{~A} \\
& \mathrm{C}_{\mathrm{ME}}=\mathbf{1 . 0 0} \\
\text { Temperature factor for tension - Table 2.3.3 } & \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}
\end{array}
$$

Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=1.00$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{Emin}^{*} \mathrm{~K}_{\mathrm{FE}}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{mE}}{ }^{*} \mathrm{C}_{\mathrm{tE}}$ * $\mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1643 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * ϕ_{c} * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$C_{P}=\left(1+\left(F_{C E} / F_{c^{*}}\right)\right) /(2 \times c)-\sqrt{ }\left(\left[\left(1+\left(F_{C E} / F_{C^{*}}\right)\right) /(2 \times c)\right]^{2}-\left(F_{C E} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=\mathbf{0 . 4 4}$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$b=13.812 \mathrm{ft}$
Shear wall aspect ratio
h / b = 0.692

Segmented shear wall capacity

Maximum shear force under seismic loading
$V_{s_{-} \max }=\mathrm{E}_{\mathrm{q}}=\mathbf{2 2 . 2 6} \mathbf{~ k i p s}$
Shear capacity for seismic loading
$V_{s}=\phi D^{*} V_{s c}{ }^{*} \mathrm{~b}=\mathbf{2 8 . 2 8 8} \mathrm{kips}$
$V_{s_{-} \max } / V_{s}=0.787$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 0.692
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=22.26 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=15.411 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=1142 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda{ }^{*} \mathrm{Cmt}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{C}_{\mathrm{Ft}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{F}^{\prime}=\mathbf{0 . 7 0 7}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=22.26 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}^{*} h+0.2$ * $\left.S_{d s}^{*} S_{w t}^{*} h\right)$ * $/ 2=0.106$ kips
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})+\mathrm{P}=15.517 \mathrm{kips}$

Design compressive stress
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{Ae}_{\mathrm{e}}=940 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}$ * K_{Fc} * $\phi \mathrm{c}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}$ * $\mathrm{CFc}^{*} \mathrm{Ci}^{*}{ }^{*} \mathrm{Cp}=\mathbf{1 4 1 8 \mathrm { lb } / \mathrm { in } ^ { 2 }}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 5				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 23 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

$\mathrm{f}_{\mathrm{c}} / \mathrm{Fc}^{\prime}=\mathbf{0 . 6 6 3}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
Seismic deflection
Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{T}_{1}=15.411 \mathrm{kips}$
$\mathrm{T}_{2}=15.411 \mathrm{kips}$
$\mathrm{V}_{\text {}} \mathrm{s}=\mathrm{E}_{\mathrm{q}}=22.26 \mathrm{kips}$
$\Delta_{\text {s_allow }}=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\mathrm{\delta s}}=\mathrm{V}_{\delta \mathrm{s}} / \mathrm{b}=1611.58 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=15.411 \mathrm{kips}$
$\delta_{\text {swse }}=2^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E * A_{e}^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{\text {ac }}\right)+h^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.55$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=2.198$ in
δ sws $/ \Delta$ s_allow $=0.958$
PASS - Shear wall deflection is less than deflection limit

Tekla Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 7				Sheet no./rev. 1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/22/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=7.813 \mathrm{ft}$
$\mathrm{A}=\mathrm{h}$ * $\mathrm{b}=74.707 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 6"
$1.5^{\prime \prime} \times 5.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=8.25 \mathrm{in}^{2}$
$\mathrm{s}=16 \mathrm{in}$
$2 \times 2 " \times 6 "$
$2 \times 1.5^{\prime \prime} \times 5.5^{\prime \prime}$
Ae $=16.5 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=13.5 \mathrm{in}^{2}$
$2 \times 2 " \times 6 "$
2×1.5 " x 5.5"
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=\mathbf{6 0 0 0 0} \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 7				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=5626 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 3 0}$
Size factor for compression - Table 4A
$\mathrm{C}_{\mathrm{Fc}}=1.10$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
$С_{м с}=1.00$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=1.00$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 7				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{E}_{\text {min' }}=\mathrm{Emin}^{*} \mathrm{~K}_{\text {fe }}{ }^{*} \phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{Me}}{ }^{*} \mathrm{C}_{\mathrm{te}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=1643 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * $\mathrm{qc}^{*} \lambda^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3208 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=0.44$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=7.813 \mathrm{ft}$
Shear wall aspect ratio
h / b = 1.224
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{s _m a x}=E_{q}=5.626 \mathrm{kips}$
Shear capacity for seismic loading
$\mathrm{V}_{\mathrm{s}}=\phi \mathrm{D}^{*} \mathrm{~V}_{\mathrm{s}}{ }^{*} \mathrm{~b}=8 \mathrm{kips}$
$V_{s_{_} \max } / V_{s}=0.703$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 1.224
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
$V=E_{q}=5.626 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
Maximum tensile force in chord
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} / \mathrm{(b)}$ - $\mathrm{P}=6.886 \mathrm{kips}$
Maximum applied tensile stress
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{en}}=510 \mathrm{lb} / \mathrm{in}^{2}$
Design tensile stress
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*}{ }^{*}{ }^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1615 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 3 1 6}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=5.626 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}{ }^{*} h+0.2$ * $\left.S_{d s}{ }^{*} S_{w t}^{*} h\right)$ * $/ 2=0.106$ kips
Maximum compressive force in chord
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} / \mathrm{b})+\mathrm{P}=6.992 \mathrm{kips}$
Maximum applied compressive stress
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=424 \mathrm{lb} / \mathrm{in}^{2}$
Design compressive stress
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{Ctc}^{*} \mathrm{C}_{\mathrm{Fc}}{ }^{*} \mathrm{Ci}^{*} \mathrm{C}_{\mathrm{p}}=1418 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}^{\prime}}=0.299$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
$\mathrm{T}_{1}=6.886 \mathrm{kips}$
Chord 2
$\mathrm{T}_{2}=6.886 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 7				Sheet no./rev.4	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 22 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=5.626 \mathrm{kips}$
Δ s_allow $=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\mathrm{\delta s}} / \mathrm{b}=720.13 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=6.886 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\text {is }}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.509$ in
$C_{d \delta}=4$
$l_{\text {e }}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=2.037 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=0.888$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 8				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=9.125 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=87.258 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 4"
$1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
$\mathrm{s}=16$ in
$3 \times 2 " \times 4 "$
$3 \times 1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
$\mathrm{Dia}=1 \mathrm{in}$
Aen $=11.25 \mathrm{in}^{2}$
2×2 " x 4"
$2 \times 1.5^{\prime \prime} \times 3.5$ "
Dry
100 degF or less
$\mathrm{k}_{\mathrm{a}}=\mathbf{6 0 0 0 0 \mathrm { lb } / \mathrm { in }}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification
Douglas Fir-Larch, no. 2 grade, 2" \& wider

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 8				$\begin{aligned} & \text { Sheet no./rev. } \\ & 2 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity

Sheathing details

Sheathing material
Fastener type
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$\mathrm{S}_{\mathrm{wt}}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=6572 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 D+W+0.5 L_{f}+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}_{\mathrm{f}}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=\mathbf{2 . 7 0}$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi D=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=1.50$
Size factor for compression - Table 4A
$C_{F c}=1.15$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=1.00$
Wet service factor for compression - Table 4A $\quad \mathrm{C}_{\mathrm{mc}}=\mathbf{1 . 0 0}$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {Ме }}=1.00$
Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 8				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

$$
\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}
$$

Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=\mathbf{1 . 0 0}$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$\mathrm{C}^{\mathrm{T}}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$E_{\text {min }}=E_{\text {min }}{ }^{*} K_{\text {fe }}{ }^{*} \phi_{s}{ }^{*} \mathrm{C}_{\text {me }}{ }^{*} \mathrm{C}_{\mathrm{te}}{ }^{*} \mathrm{Ci}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{t}}=870000 \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{cE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=665 \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * ${ }_{\phi \mathrm{c}}$ * $\lambda{ }^{*} \mathrm{Cmc}_{\mathrm{mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
For sawn lumber
$\mathrm{C}=0.8$
Column stability factor - eqn.3.7-1
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{c^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=\mathbf{0 . 1 9}$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio
Shear wall length
Shear wall aspect ratio
3.5
$\mathrm{b}=9.125 \mathrm{ft}$
h / b = 1.048
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{s _m a x}=E_{q}=6.572 \mathrm{kips}$
Shear capacity for seismic loading

Chord capacity for chords 1 and 2

Shear wall aspect ratio
$h / b=1.048$
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress

Load combination 3
Shear force for maximum compression
Axial force for maximum compression
Maximum compressive force in chord
Maximum applied compressive stress
Design compressive stress
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=9.344 \mathrm{kips}$
$\mathrm{V}_{\mathrm{s} \text { _max }} / \mathrm{V}_{\mathrm{s}}=0.703$
$V=E_{q}=6.572 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})-\mathrm{P}=6.887 \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{6 1 2} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{t}} / \mathrm{F}_{\mathrm{t}}=0.329$
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=6.572 \mathrm{kips}$
$C=V^{*} h /(b)+P=6.993 \mathrm{kips}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=444 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Shear capacity for seismic load exceeds maximum shear force
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{~K}_{\mathrm{Ft}}{ }^{*} \phi t{ }^{*} \lambda^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$

PASS - Design tensile stress exceeds maximum applied tensile stress

$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*}{ }^{*} \mathrm{Ci}^{*} \mathrm{CP}_{\mathrm{p}}=636 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 6 9 9}$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord $1 \quad \mathrm{~T}_{1}=6.887 \mathrm{kips}$
Chord $2 \quad \mathrm{~T}_{2}=6.887 \mathrm{kips}$

Seismic deflection

Design shear force
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{E}_{\mathrm{q}}=6.572 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 8				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$\Delta_{\text {s_allow }}=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\delta \mathrm{s}} / \mathrm{b}=720.22 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=6.887 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\delta s}{ }^{*} h^{3} /\left(3^{*} E{ }^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h{ }^{*} T_{\delta} /\left(k_{a}^{*} b\right)=0.487$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{Cd}_{\mathrm{d} \delta}^{*} \delta_{\text {swse }} / \mathrm{l}_{\mathrm{e}}=1.946 \mathrm{in}$
$\delta_{\text {sws }} / \Delta_{\text {s_allow }}=0.848$
PASS - Shear wall deflection is less than deflection limit

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 9				Sheet no./rev.1	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/22/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 load reduction factor design and the segmented shear wall method

Panel details

Structural wood panel sheathing on one side
Panel height
$\mathrm{h}=9.563 \mathrm{ft}$
Panel length
Total area of wall
$\mathrm{b}=9.25 \mathrm{ft}$
$\mathrm{A}=\mathrm{h} * \mathrm{~b}=88.453 \mathrm{ft}^{2}$

Panel construction

Nominal stud size
Dressed stud size
Cross-sectional area of studs
Stud spacing
Nominal end post size
Dressed end post size
Cross-sectional area of end posts
Hole diameter
Net cross-sectional area of end posts
Nominal collector size
Dressed collector size
Service condition
Temperature
Vertical anchor stiffness

2" x 4"
$1.5^{\prime \prime} \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=5.25 \mathrm{in}^{2}$
$s=16$ in
$3 \times 2 " \times 4 "$
$3 \times 1.5 " \times 3.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{e}}=15.75 \mathrm{in}^{2}$
Dia $=1$ in
Aen $=11.25$ in 2
$2 \times 2 " \times 4 "$
2×1.5 " x 3.5"
Dry
100 degF or less
$\mathrm{ka}_{\mathrm{a}}=\mathbf{6 0 0 0 0} \mathrm{lb} / \mathrm{in}$

Tekla. Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 9				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 22 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification
Specific gravity
Tension parallel to grain
Compression parallel to grain
Modulus of elasticity
Minimum modulus of elasticity
Sheathing details
Sheathing material
Fastener type

Douglas Fir-Larch, no. 2 grade, 2" \& wider
$G=0.50$
$\mathrm{F}_{\mathrm{t}}=575 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1600000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Emin}_{\min }=580000 \mathrm{lb} / \mathrm{in}^{2}$

15/32" wood panel 3-ply plywood sheathing
8d common nails at 2 "centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design $\mathrm{v}_{\mathrm{s}}=1280 \mathrm{lb} / \mathrm{ft}$
Nominal unit shear capacity for wind design $\quad \mathrm{V}_{\mathrm{w}}=1790 \mathrm{lb} / \mathrm{ft}$
Apparent shear wall shear stiffness
$\mathrm{G}_{\mathrm{a}}=20 \mathrm{kips} / \mathrm{in}$

Loading details

Self weight of panel
$S_{w t}=12 \mathrm{lb} / \mathrm{ft}^{2}$
In plane seismic load acting at head of panel
$\mathrm{E}_{\mathrm{q}}=6662 \mathrm{lbs}$
Design spectral response accel. par., short periods
SDS $=0.944$
From IBC 2018 cl.1605.2
Load combination no. 1
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+0.5 \mathrm{~W}$
Load combination no. 2
$1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
Load combination no. 3
$1.2 \mathrm{D}+\mathrm{E}+0.5 \mathrm{~L}+0.7 \mathrm{~S}$
Load combination no. 4
$0.9 \mathrm{D}+\mathrm{W}$
Load combination no. 5
$0.9 \mathrm{D}+\mathrm{E}$

Adjustment factors

Format conversion factor for tension - Table N1
$\mathrm{K}_{\mathrm{Ft}}=2.70$
Format conversion factor for compression - Table N1
$\mathrm{K}_{\mathrm{Fc}}=\mathbf{2 . 4 0}$
Format conversion factor for modulus of elasticity - Table N1
$K_{\text {FE }}=1.76$
Resistance factor for tension - Table N2
$\phi t=0.80$
Resistance factor for compression - Table N2
$\phi c=0.90$
Resistance factor for modulus of elasticity - Table N2
$\phi s=0.85$
Time effect factor - Table N3
$\lambda=1.00$
Sheathing resistance factor
$\phi \mathrm{D}=0.80$
Size factor for tension - Table 4A
$\mathrm{C}_{\mathrm{Ft}}=\mathbf{1 . 5 0}$
Size factor for compression - Table 4A
$\mathrm{CFc}_{\mathrm{F}}=1.15$
Wet service factor for tension - Table 4A
$\mathrm{Cmt}_{\mathrm{mt}}=\mathbf{1 . 0 0}$
Wet service factor for compression - Table 4A
$С_{м с}=1.00$
Wet service factor for modulus of elasticity - Table 4A
$С_{\text {ME }}=\mathbf{1 . 0 0}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Wood Shear Wall - Supp. Main Level Wall 9				$\begin{aligned} & \text { Sheet no./rev. } \\ & 3 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/22/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Temperature factor for tension - Table 2.3.3 $\quad \mathrm{C}_{\mathrm{tt}}=\mathbf{1 . 0 0}$
Temperature factor for compression - Table 2.3.3
$\mathrm{C}_{\mathrm{tc}}=\mathbf{1 . 0 0}$
Temperature factor for modulus of elasticity - Table 2.3.3
$C_{t E}=1.00$
Incising factor - cl.4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Buckling stiffness factor - cl.4.4.2
$C_{T}=\mathbf{1 . 0 0}$
Adjusted modulus of elasticity
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{~K}_{\text {FE }}$ * $\phi_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{me}}{ }^{*} \mathrm{C}_{\mathrm{tE}}{ }^{*} \mathrm{C}_{\mathrm{i}}{ }^{*} \mathrm{C}_{\mathrm{T}}=\mathbf{8 7 0 0 0 0} \mathrm{psi}$
Critical buckling design value
$\mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{Emin}^{\prime} /(\mathrm{h} / \mathrm{d})^{2}=\mathbf{6 6 5} \mathrm{psi}$
Reference compression design value
$\mathrm{Fc}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}$ * $\mathrm{qc}^{*} \lambda^{*} \mathrm{Cmc}_{\mathrm{m}}{ }^{*} \mathrm{Ctc}_{\mathrm{tc}}{ }^{*} \mathrm{Cfc}^{*} \mathrm{Ci}_{\mathrm{i}}=3353 \mathrm{psi}$
For sawn lumber
Column stability factor - eqn.3.7-1
$\mathrm{C}=0.8$
$\mathrm{C}_{\mathrm{P}}=\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{C^{*}}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left(\left[\left(1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}^{*}}\right)\right) /(2 \times \mathrm{c})\right]^{2}-\left(\mathrm{F}_{\mathrm{CE}} /\right.\right.$
$\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{*}\right) / \mathrm{c}\right)=0.19$
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Maximum shear wall aspect ratio
3.5

Shear wall length
$\mathrm{b}=9.25 \mathrm{ft}$
Shear wall aspect ratio
h / b = 1.034
Segmented shear wall capacity
Maximum shear force under seismic loading $\quad V_{s _m a x}=E_{q}=6.662 \mathrm{kips}$
Shear capacity for seismic loading
$V_{s}=\phi D^{*} V_{s}{ }^{*} b=9.472$ kips
$V_{s_{_} \max } / V_{s}=0.703$
PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio
h / b = 1.034
Load combination 5
Shear force for maximum tension
Axial force for maximum tension
$V=E_{q}=6.662 \mathrm{kips}$
$\mathrm{P}=0 \mathrm{kips}=0 \mathrm{kips}$
Maximum tensile force in chord
Maximum applied tensile stress
Design tensile stress
$\mathrm{T}=\mathrm{V}$ * $\mathrm{h} /(\mathrm{b})-\mathrm{P}=6.887 \mathrm{kips}$
$\mathrm{ft}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\text {en }}=\mathbf{6 1 2} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Ft}^{\prime}=\mathrm{Ft}^{*} \mathrm{KFt}^{*}{ }^{*}{ }^{*}{ }^{*} \lambda{ }^{*} \mathrm{C}_{\mathrm{Mt}}{ }^{*} \mathrm{C}_{\mathrm{tt}}{ }^{*} \mathrm{CFt}^{*} \mathrm{Ci}_{\mathrm{i}}=1863 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft}_{\mathrm{t}} / \mathrm{Ft}^{\prime}=\mathbf{0 . 3 2 9}$
PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 3
Shear force for maximum compression
Axial force for maximum compression
$\mathrm{V}=\mathrm{E}_{\mathrm{q}}=6.662 \mathrm{kips}$
$P=\left(1.2\right.$ * $S_{w t}{ }^{*} h+0.2$ * $\left.S_{d s}{ }^{*} S_{w t}^{*} h\right)$ * $/ 2=0.106$ kips
Maximum compressive force in chord
$\mathrm{C}=\mathrm{V}$ * $\mathrm{h} / \mathrm{b})+\mathrm{P}=6.993 \mathrm{kips}$
Maximum applied compressive stress
$\mathrm{f}_{\mathrm{c}}=\mathrm{C} / \mathrm{A}_{\mathrm{e}}=444 \mathrm{lb} / \mathrm{in}^{2}$
Design compressive stress
$\mathrm{Fc}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~K}_{\mathrm{Fc}}{ }^{*} \phi_{\mathrm{c}}{ }^{*} \lambda{ }^{*} \mathrm{Cmc}_{\mathrm{Mc}}{ }^{*} \mathrm{C}_{\mathrm{tc}}{ }^{*} \mathrm{CFc}^{*}{ }^{*} \mathrm{Ci}^{*} \mathrm{C}_{\mathrm{P}}=\mathbf{6 3 6} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}^{\prime}}=0.699$
PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1
Chord 2
$\mathrm{T}_{1}=6.887 \mathrm{kips}$
$\mathrm{T}_{2}=6.887 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Wood Shear Wall - Supp. Main Level Wall 9				Sheet no./rev.4	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 22 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Seismic deflection

Design shear force
Deflection limit
Induced unit shear
Anchor tension force
Shear wall elastic deflection - Eqn. 4.3-1
Deflection ampification factor
Seismic importance factor
Amp. seis. deflection - ASCE7 Eqn. 12.8-15
$V_{\delta s}=E_{q}=6.662 \mathrm{kips}$
$\Delta_{\text {s_allow }}=0.020$ * $\mathrm{h}=2.295 \mathrm{in}$
$\mathrm{V}_{\delta \mathrm{s}}=\mathrm{V}_{\text {ঠs }} / \mathrm{b}=720.22 \mathrm{lb} / \mathrm{ft}$
$\mathrm{T}_{\delta}=\max \left(0 \mathrm{kips}, \mathrm{V}_{\delta \mathrm{s}}{ }^{*} \mathrm{~h}\right)=6.887 \mathrm{kips}$
$\delta_{\text {swse }}=2{ }^{*} V_{\text {is }}{ }^{*} h^{3} /\left(3^{*} E^{*} A_{e}{ }^{*} b\right)+V_{\delta s}{ }^{*} h /\left(G_{a}\right)+h^{*} T_{\delta} /\left(k_{a}{ }^{*} b\right)=0.485$ in
$C_{d \delta}=4$
$l_{e}=1$
$\delta_{\text {sws }}=\mathrm{C}_{\mathrm{d} \delta}{ }^{*} \delta_{\mathrm{swse}} / \mathrm{l}_{\mathrm{e}}=1.939 \mathrm{in}$
$\delta_{\text {sws }} / \Delta$ s_allow $=\mathbf{0 . 8 4 5}$
PASS - Shear wall deflection is less than deflection limit

3.2 | STEEL MOMENT FRAME DESIGN

PROJECT:	Yaroslavsky Residence	PROJECT NUMBER:	8119
SUBJECT: Moment Frame Gravity Loading	DATE:	2021-03-03	
DESIGN BY: BJW			

NOTES: MAIN LEVEL

GEOMETRY:

Tributary width
Beam length

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

1.83	12.375
60	40
30	0

LINE LOADS:
Dead load

Superimposed dead load
Live load
Snow load

DL $=$	0	plf
SDL $=$	426.25	plf
$\mathrm{LL}=$	605	plf
$\mathrm{SL}=$	$\mathbf{5 5 . 0 0 0}$	plf

0.00	klf
0.43	klf
0.61	klf
0.06	klf

REACTIONS:

Girder reaction	RDL	$\mathbf{0 . 0 0}$	kips
RSDL	$=$	$\mathbf{5 . 6 7}$	kips
RLL	$=$	$\mathbf{8 . 0 4}$	kips
RSL	$=$	$\mathbf{0 . 7 3}$	kips

PROJECT:	Yaroslavsky Residence	PROJECT NUMBER:	8119
SUBJECT:	Moment Frame Gravity Loading	DATE:	2021-03-03
DESIGN BY: BJW			

NOTES: UPPER LEVEL

GEOMETRY:

Tributary width
Beam length

w_{T}	$=6.917 \mathrm{ft}$
L	$=26.58 \mathrm{ft}$

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

DL =	0
SDL $=$	30
LL =	40
SL =	30

LINE LOADS:

Dead load	DL	$=$	0	plf	0.00	klf
Superimposed dead load	SDL	$=$	407.5	plf	0.41	klf

POINT LOADS (SEE TB1 TEDDS FILE): ACTING 4'-8" FROM RIGHT SUPPORT
Dead load
Superimposed dead load
Live load
Snow load

DL =	0
SDL $=$	13.1
LL =	9.8
SL =	5.6

REACTIONS:
Girder reaction

RDL $=$	$\mathbf{0 . 0 0}$	kips
RSDL $=$	$\mathbf{5 . 4 2}$	kips
RLL $=$	$\mathbf{3 . 6 8}$	kips
RSL $=$	$\mathbf{2 . 7 6}$	kips

JOINT LABELS

FRAME SECTION ASSIGNMENTS

3D MODEL VIEW

JOINT 9 LOADING - POINT LOAD FROM STEEL TRANSFER BEAM

JOINT 6 LOADING

JOINT 2 LOADING

UPPER FRAME ELEMENT LOADING

LOWER FRAME ELEMENT LOADING

DEFORMED SHAPE - 0.6 W

DEFORMED SHAPE - 1.0 EQ

STRENGTH DESIGN CHECK (PER AISC 360)

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	1
Address:	Specifier:		
Phone I Fax:	E-Mail:		
Design:	Date:	$3 / 3 / 2021$	
Fastening point:			

Specifier's comments:

1 Input data

Anchor type and diameter:

Item number:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:

Anchor plate ${ }^{R}$:
Profile:
Base material:
Reinforcement:

Seismic loads (cat. C, D, E, or F)

Hex Head ASTM F 1554 GR. 361
not available
$h_{\text {ef }}=6.000 \mathrm{in}$.
ASTM F 1554
Hilti Technical Data

- | -

Design Method ACI 318-11 / CIP
without clamping (anchor); restraint level (anchor plate): $2.00 ; \mathrm{e}_{\mathrm{b}}=1.010 \mathrm{in} . ; \mathrm{t}=0.750 \mathrm{in}$.
Hilti Grout: CB-G EG, epoxy, $\mathrm{f}_{\mathrm{c}, \text { Grout }}=14,939 \mathrm{psi}$
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=16.000 \mathrm{in} . \times 12.000 \mathrm{in} . \times 0.750$ in.; (Recommended plate thickness: not calculated)
W shape (AISC), W14X82; (L x W x T x FT) $=14.300 \mathrm{in} . x 10.100 \mathrm{in} . \times 0.510 \mathrm{in} . \times 0.855 \mathrm{in}$.
cracked concrete, 5000, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=5,000 \mathrm{psi} ; \mathrm{h}=18.000 \mathrm{in}$.
tension: condition B, shear: condition B; edge reinforcement: none or < No. 4 bar Tension load: no Shear load: yes (D.3.3.5.3 (a))
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] \& Loading [kip, ft.kip]

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	2
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:	Moment Frame Base Plate		

1.1 Unfactored loads

	Sustained load factor	Load factor f_{1} or f_{2}	V_{x} [kip]	V ${ }_{\text {y }}$ [kip]	N [kip]	M_{x} [ft.kip]	M_{y} [ft.kip]	M_{z} [ft.kip]
D (Dead)	1.000	-	1.180	-	-30.000	-	-	-
F (Fluid)	1.000	-	-	-	-	-	-	-
T (Temperature)	1.000	-	-	-	-	-	-	-
L (Live)	1.000	0.500	1.210	-	-20.000	-	-	-
H (Lateral)	1.000	-	-	-	-	-	-	-
L_{r} (Roof live)	1.000	-	-	-	-	-	-	-
S (Snow)	1.000	0.200	0.220	-	-8.700	-	-	-
R (Rain)	-	-	-	-	-	-	-	-
W (Wind)	-	-	4.300	-	5.700	-	-	-
E (Earthquake)	-	-	8.000	-	11.000	-	-	-
1.2 Design results								
Case	Description		Forces [kip] / Moments [ft.kip]				Seismic	Max. Util. Anchor [\%]
1	Load case: Design loads		$\begin{gathered} N=-42.000 ; V_{x}=1.652 ; V_{y}=0.000 ; \\ M_{x}=0.00000 ; M_{y}=0.00000 ; M_{z}=0.00000 ; \end{gathered}$				yes	14

2 Load case/Resulting anchor forces

Anchor reactions [kip]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0.000	2.516	2.516	0.000
2	0.000	2.516	2.516	0.000
3	0.000	2.516	2.516	0.000
4	0.000	2.516	2.516	0.000

max. concrete compressive strain:	$0.04[\% 0]$
max. concrete compressive stress:	$191[\mathrm{psi}]$
resulting tension force in $(x / y)=(0.000 / 0.000):$	$0.000[\mathrm{kip}]$

resulting compression force in $(\mathrm{x} / \mathrm{y})=(0.000 / 0.000)$: 36.740 [kip]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load $\mathrm{N}_{\text {ua }}$ [kip]	Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}$ [kip]	Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	3
Address:	Specifier:		
Phone I Fax:	E-Mail:	$3 / 3 / 2021$	
Design:	Doment Frame Base Plate		
Fastening point:			

4 Shear load

	Load V_{ua} [kip]	Capacity $\boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$ [kip]	Utilization $\beta_{\mathrm{v}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\prime} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	2.516	10.966	23	OK
Steel failure (with lever arm)*	2.516	3.047	83	OK
Pryout Strength**	10.065	75.642	14	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

4.1 Steel Strength

$V_{\text {sa }} \quad=0.6 A_{\text {se, } V} f_{u t a} \quad$ ACI 318-11 Eq. (D-29)
$\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-11 Table D.4.1.1

Variables

$\mathrm{A}_{\text {se, } \mathrm{V}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.61	58,000

Calculations

V_{sa} [kip]
21.089

Results

$\mathrm{V}_{\text {sa }}[\mathrm{kip}]$	$\phi_{\text {steel }}$	$\phi_{\text {eb }}$	$\phi \mathrm{V}_{\text {sa,eq }}[\mathrm{kip}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{kip}]$
21.089	0.650	0.800	10.966	2.516

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	4
Address:	Specifier:	4	
Phone I Fax:	I	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:			

4.2 Steel failure (with lever arm)

V_{s}^{M}	$=\frac{\alpha_{M} \cdot M_{s}}{L_{b}}$	
M_{s}	$=M_{s}^{0}\left(1-\frac{N_{u a}}{\phi N_{s a}}\right)$	bending equation for stand-off
M_{s}^{0}	$=(1.2)(S)\left(f_{u, \text { min }}\right)$	resultant flexural resistance of anchor
$\left(1-\frac{N_{u a}}{\phi N_{s a}}\right)$		characteristic flexural resistance of anchor
S	$=\frac{\pi(d)^{3}}{32}$	
L_{b}	$=z+(n)\left(d_{0}\right)$	elastic section modulus of anchor bolt at concrete surface
ϕV_{s}^{M}	$\geq V_{\text {ua }}$	internal lever arm adjusted for spalling of the surface concrete

Variables

α_{M}	$\mathrm{f}_{\mathrm{u}, \min }[\mathrm{psi}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{kip}]$	$\phi \mathrm{N}_{\text {sa }}[\mathrm{kip}]$	z [in.]	n
2.00	58,000	0.000	26.361	1.385	0.500

Calculations

$\mathrm{M}_{\mathrm{s}}^{0}[f \mathrm{tt}$ kip]	$\left(1-\frac{\mathrm{N}_{\mathrm{ua}}}{\phi \mathrm{N}_{\mathrm{sa}}}\right)$	M_{s} [ft.kip]	L_{b} [in.]
0.36815	1.000	0.36815	1.885

Results

$V_{\mathrm{s}}^{\mathrm{M}}[\mathrm{kip}]$	$\phi_{\text {steel }}$	$\phi \vee_{\mathrm{s}}^{\mathrm{M}}[\mathrm{kip}]$	$\mathrm{V}_{\text {ua }}[$ kip $]$
4.687	0.650	3.047	2.516

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	5
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:			

4.3 Pryout Strength

$\mathrm{V}_{\mathrm{cpg}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\mathrm{ec}, \mathrm{N}} \psi_{\mathrm{ed}, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right]$
$\phi \mathrm{V}_{\mathrm{cpg}} \geq \mathrm{V}_{\mathrm{ua}}$
$A_{\text {Nc }} \quad$ see ACI 318-11, Part D.5.2.1, Fig. RD.5.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\text {ec, }, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{e d, N}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{c p, N}=\operatorname{MAX}\left(\frac{c_{a, \min }}{C_{a c}}, \frac{1.5 h_{e f}}{c_{a c}}\right) \leq 1.0$
$N_{b} \quad=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{e f}^{1.5}$

ACI 318-11 Eq. (D-41)
ACI 318-11 Table D.4.1.1

ACI 318-11 Eq. (D-5)
ACI 318-11 Eq. (D-8)

ACl 318-11 Eq. (D-10)
ACI 318-11 Eq. (D-12)
ACI 318-11 Eq. (D-6)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.
2	6.000	0.000	0.000	∞

$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[$ in. $]$	k_{c}	λ_{a}	$\dot{f}_{\mathrm{c}}[\mathrm{psi}]$
1.000	-	24	1.000	5,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in} .^{2}{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ecc,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{kip}]$
701.87	324.00	1.000	1.000	1.000	1.000	24.942

Results

$\mathrm{V}_{\text {cpg }}[\mathrm{kip}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{kip}]$	$\mathrm{V}_{\text {ua }}[\mathrm{kip}]$
108.061	0.700	1.000	1.000	75.642	10.065

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	6
Address:	Specifier:		
Phone I Fax:	1	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:			

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Engineering calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- For additional information about ACl 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-11 Appendix D. The connection design (shear) shall satisfy the provisions of Part D.3.3.5.3 (a), Part D.3.3.5.3 (b), or Part D.3.3.5.3 (c).
- Part D.3.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Part D.3.3.5.3 (b) waive the ductility requirements and requires that the anchors shall be designed for the maximum shear that can be transmitted to the anchors by a non-yielding attachment. Part D.3.3.5.3 (c) waives the ductility requirements and requires the design strength of the anchors to equal or exceed the maximum shear obtained from design load combinations that include E, with E increased by ω_{0}.

Fastening meets the design criteria!

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	7
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:			

6 Installation data

Anchor type and diameter: Hex Head ASTM F 1554 GR. 361
Profile: W shape (AISC), W14X82; (L x W x T xFT) = $14.300 \mathrm{in} . \times 10.100 \mathrm{in} . \mathrm{x}$ 0.510 in. $x 0.855$ in.

Hole diameter in the fixture: $d_{f}=1.062$ in.
Item number: not available

Plate thickness (input): 0.750 in.
Recommended plate thickness: not calculated

Installation torque: -
Hole diameter in the base material: - in.
Hole depth in the base material: 6.000 in.
Minimum thickness of the base material: 7.172 in.

Hilti Hex Head headed stud anchor with 6 in embedment, 1, Steel galvanized, installation per instruction for use

Coordinates Anchor [in.]

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-4.246	-4.246	-	-	-	-
2	4.246	-4.246	-	-	-	-
3	-4.246	4.246	-	-	-	-
4	4.246	4.246	-	-	-	-

Hilti PROFIS Engineering 3.0.67
www.hilti.com

Company:		Page:	8
Address:	Specifier:	8	
Phone I Fax:	I	E-Mail:	
Design:	Date:	$3 / 3 / 2021$	
Fastening point:	Moment Frame Base Plate		

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

3.3 | DIAPHRAGM DESIGN

Level: High Roof
 $\begin{array}{lc}\mathrm{H}= & 9.5 \mathrm{ft} \\ \text { Typ. Diaphragm } & \text { Unblocked, } 8 \mathrm{~d} \text { 19/32 }\end{array}$

GRID	Vu (kips)	\$vs (k/ft)	Lreq (ft)	Lwall (ft)	Check	Notes	\$vs req table (lb/ft)	Blocking	¢vs table (lb/ft)	Drag Strap (min. ft)	Drag Strap Demand (kips)
A	1.44	0.384	3.75	5.92	OK	Case 1	304	-	- -	-	-
B	3.36	0.384	8.75	11.38	OK	Case 1	369	-	-	-	-
C	3.36	0.384	8.75	12.58	OK	Case 1	334	-	-	-	-
1	4	0.288	13.89	16.88	OK	Case 3	296	-	-	-	-
2	4	0.288	13.89	16.38	OK	Case 3	305	-	-	-	-

$\begin{array}{lc}\text { H = } & 10 \mathrm{ft} \\ \text { Typ. Diaphragm } & \text { Unblocked, } 8 \mathrm{~d} \text { 15/32 }\end{array}$

GRID	Vu (kips)	\$vs (k/ft)	Lreq (ft)	Lwall (ft)	Check	Notes	фvs req table (lb/ft)	Blocking	фvs table (lb/ft)	Drag Strap (min. ft)	Drag Strap Demand (kips)
A	1.14	0.288	3.96	4.90	OK	Case 2-6	291	-	-	-	-
B	9.2	0.288	31.94	25.40	NG	Case 2-6	453	B to C, 15/32 8d @ 6"	540	-	-
C	10.836	0.288	37.63	16.83	NG	Case 2-6	805	-	-	20.79	6.0
D	3.69	0.288	12.81	11.08	NG	Case 2-6	416	-	-	1.73	0.5
E	2.83	0.288	9.83	29.00	OK	Case 2-6	122	-	-	Engage garage wall	2.8
F	6.19	0.288	21.49	7.83	NG	Case 2-6	988	E to F, 15/32 8d @ 2.5"	1060	-	-
1	2.78	0.288	9.65	13.35	OK	Case 2-6	260	-	-	-	-
2	9	0.288	31.25	13.42	NG	Case 2-6	839			17.83	5.1
3	7.4	0.288	25.69	13.23	NG	Case 2-6	699				
4	2.04	0.288	7.08	4.13	NG	Case 2-6	618			2.96	0.9

Level:	Main Level
$\mathrm{H}=$	9.56 ft
Typ. Diaphragm	Blocked, $8 \mathrm{~d} 15 / 32$ @ 2.5"

GRID	Vu (kips)	¢vs (k/ft)	Lreq (ft)	Lwall (ft)	Check	Notes	\$vs req table (lb/ft)	Blocking	\$vs table (lb/ft)	Drag Strap (min. ft)	Drag Strap Demand (kips)
A	3.05	0.848	3.60	25.40	OK	Case 2-6	150	-	-	-	-
B	15.8	0.848	18.63	26.19	OK	Case 2-6	754	-	-	-	-
C	11.79	0.848	13.90	16.08	OK	Case 2-6	916	-	-	-	-
1	16.68	0.848	19.67	14.56	NG	Case 2-6	1432	-	-	5.11	4.3
2	17.19	0.848	20.27	13.81	NG	Case 2-6	1556	-	-	6.46	5.5
3	7.22	0.848	8.51	20.15	OK	Case 2-6	448	-	-	-	-
4	17.76	0.848	20.94	13.65	NG	Case 2-6	1627	-	-	7.30	6.2
5	1.35	0.848	1.59	20.19	OK	Case 2-6	84	-	-	-	-
6	0.25	0.848	0.29	4.15	OK	Case 2-6	75	-	-	-	-

3.4 | CONNECTOR DESIGN

ASD to LRFD Adjustment Factors		
K_{F}	$=$	3.32
ϕ	$=$	0.65
λ	$=$	1
C_{D}	$=$	1.6

SST HOLDDOWNS			
MODEL NO.		ALLOWABLE TENSION LOADS (Ibs)	
	ASD		
HDU2-SDS2.5	3075	4147	
HDU4-SDS2.5	4565	6157	
HDU5-SDS2.5	5645	7614	
HDU8-SDS2.5	6765	9124	

SST FLOOR TO FLOOR STRAPS		
MODEL NO.	ALLOWABLE TENSION LOADS (Ibs)	
	ASD	
CMSTC16	4690	LRFD
CMST14	6475	6326
CMST12	9215	8733

SST HANGERS		
MODEL NO.	ALLOWABLE TENSION LOADS (Ibs)	
	ASD	
HHUS5.50/10	2825	LRFD
MGU5.50-SDS (5 1/4)	7260	3810
HDU5-SDS2.5	5645	9792
HDU8-SDS2.5	6765	7614

4 | FOUNDATION DESIGN

4.1 | FOOTING AND FOUNDATION WALL DESIGN

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Typical Wall Footing (F1)				Sheet no./rev. 1	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Foundation analysis \& design (ACl 318) in accordance with $\mathrm{ACl} 318-14$

FOOTING ANALYSIS

Length of foundation
Width of foundation
Foundation area
Depth of foundation
Depth of soil over foundation
Density of concrete
$L_{x}=1 \mathrm{ft}$
$\mathrm{L}_{y}=1.5 \mathrm{ft}$
$A=L_{x} \times L_{y}=1.5 \mathrm{ft}^{2}$
$\mathrm{h}=10$ in
$h_{\text {soil }}=18$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Wall no. 1 details

Width of wall
position in y-axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction

Foundation loads

Self weight
Soil weight
$\mathrm{l}_{\mathrm{y} 1}=8 \mathrm{in}$
$y_{1}=9$ in
qallow_Gross = 2.5 ksf
$\gamma_{\text {soil }}=125.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi \mathrm{b}=\mathbf{3 0 . 0} \mathrm{deg}$
$\delta_{b b}=19.3 \mathrm{deg}$
$\tan (\delta$ bь $)=0.350$
$\mathrm{F}_{\text {swt }}=\mathrm{h} * \gamma_{\text {conc }}=125 \mathrm{psf}$
$F_{\text {soil }}=h_{\text {soil }}{ }^{*} \gamma_{\text {soil }}=187.5 \mathrm{psf}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Typical Wall Footing (F1)				Sheet no./rev.2	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Wall no. 1 loads per linear foot

Dead load in z
Live load in z
$F_{\text {Dz1 }}=1.5 \mathrm{kips}$
$\mathrm{F}_{\mathrm{Lz1} 1}=1.5 \mathrm{kips}$
Footing analysis for soil and stability
Load combinations per ASCE 7-16
1.0D (0.525)
$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (0.925)
Combination 2 results: 1.0D + 1.0L
Forces on foundation per linear foot
Force in z-axis
Moments on foundation per linear foot
Moment in y -axis, about y is 0

Uplift verification

Vertical force

Stability against sliding

Resistance due to base friction
Bearing resistance
Eccentricity of base reaction
Eccentricity of base reaction in y-axis

Strip base pressures

Minimum base pressure
Maximum base pressure

Allowable bearing capacity

Allowable bearing capacity

FOOTING DESIGN (ACl318)

In accordance with ACl318-14

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
Cover to reinforcement
Concrete type
Concrete modification factor
Wall type
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{4 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000$ psi
Ety $=\mathbf{0 . 0 0 2 0 0}$
Cnom $=3$ in
Normal weight
$\lambda=1.00$
Concrete
$F_{d z}=\gamma \mathrm{D}{ }^{*} \mathrm{~A}^{*}\left(\mathrm{~F}_{\mathrm{swt}}+\mathrm{F}_{\text {soil }}\right)+\gamma \mathrm{D}{ }^{*} \mathrm{~F}_{\mathrm{Dz} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Lz} 1}=3.5 \mathrm{kips}$
$M_{d y}=\gamma D^{*}\left(A^{*}\left(F_{s w t}+F_{\text {soil }}\right) * L_{y} / 2\right)+\gamma D^{*}\left(F_{D z 1}{ }^{*} y_{1}\right)+\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)=2.6$
kip_ft
$\mathrm{F}_{\mathrm{dz}}=3.469 \mathrm{kips}$
PASS - Foundation is not subject to uplift

Frfriction $=\max \left(\mathrm{Fdz}_{\mathrm{dz}}, 0 \mathrm{kN}\right){ }^{*} \tan \left(\delta_{\mathrm{bb}}\right)=1.214 \mathrm{kips}$
$\mathrm{e}_{\mathrm{d} y}=\mathrm{Mdy}_{\mathrm{d}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0 . 0 0 0} \mathrm{in}$
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}}{ }^{*}\left(1-6\right.$ * $\left.\mathrm{edy}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{\mathrm{y}}{ }^{*} 1 \mathrm{ft}\right)=\mathbf{2 . 3 1 2} \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}}{ }^{*}\left(1+6{ }^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(L_{y}{ }^{*} 1 \mathrm{ft}\right)=\mathbf{2 . 3 1 2} \mathrm{ksf}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}\right)=2.312 \mathrm{ksf}$
$q_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=\mathbf{2 . 3 1 2} \mathrm{ksf}$
qallow = qallow_Gross $=2.5 \mathrm{ksf}$
$q_{\text {max }} /$ qallow $=0.925$
PASS - Allowable bearing capacity exceeds design base pressure

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section Typical Wall Footing (F1)				Sheet no./rev.3	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.009)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \operatorname{Lr}(0.018)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on foundation per linear foot

Ultimate force in z-axis
$F_{u z}=\gamma \mathrm{D}{ }^{*} \mathrm{~A}^{*}\left(\mathrm{~F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right)+\gamma \mathrm{D}{ }^{*} \mathrm{~F}_{\mathrm{Dz} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Lz} 1}=4.8 \mathrm{kips}$
Moments on foundation per linear foot
Ultimate moment in y -axis, about y is 0
$M_{u y}=\gamma D^{*}\left(A^{*}\left(F_{s w t}+F_{s o i l}\right){ }^{*} L_{y} / 2\right)+\gamma \mathrm{D} *\left(F_{D z 1}{ }^{*} y_{1}\right)+\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)=3.6$
kip_ft
Eccentricity of base reaction
Eccentricity of base reaction in y-axis
$e_{u y}=M_{u y} / F_{u z}-L_{y} / 2=0.000$ in
Strip base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure

$$
\begin{aligned}
& q_{u 1}=F_{u z} *\left(1-6^{*} e_{u y} / L_{y}\right) /\left(L_{y} * 1 \mathrm{ft}\right)=3.175 \mathrm{ksf} \\
& q_{u 2}=F_{u z} *\left(1+6^{*} e_{u y} / L_{y}\right) /\left(L_{y}^{*} 1 \mathrm{ft}\right)=3.175 \mathrm{ksf} \\
& q_{u \min }=\min \left(q_{u 1}, q_{u z}\right)=3.175 \mathrm{ksf} \\
& q_{u m a x}=\max \left(q_{u 1}, q_{u z}\right)=3.175 \mathrm{ksf}
\end{aligned}
$$

Shear diagram (kips)

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (7.6.1.1)

Maximum spacing of reinforcement (7.7.2.3)

Mu.y.max $=0.243$ kip_ft
No. 5 bars at 8.0 in c/c bottom
Asy.bot.prov $=0.465 \mathrm{in}^{2}$
$A_{s . \min }=0.0018{ }^{*} L_{x}{ }^{*} h=0.216 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$S_{\max }=\min \left(3^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement
Depth of compression block
Neutral axis factor
$\mathrm{d}=\mathrm{h}-$ Cnom $^{\mathrm{C}}$ фy.bot $/ 2=6.688$ in
$\mathrm{a}=$ Asy.bot.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}_{\mathrm{c}}{ }^{*} \mathrm{~L}_{\mathrm{x}}\right)=\mathbf{0 . 6 8 4} \mathrm{in}$
$\beta 1=0.85$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Typical Wall Footing (F1)				Sheet no./rev. 4	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(7.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.804 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * d / c-0.003 $=\mathbf{0 . 0 2 1 9 4}$
ε min $=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}=\mathrm{A}_{\text {sy.bot.prov }}$ * $\mathrm{fy}^{*}(\mathrm{~d}-\mathrm{a} / 2)=14.753 \mathrm{kip} \mathrm{ft}$
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) /(0.005-\varepsilon t y), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}{ }^{*} \mathrm{Mn}_{\mathrm{n}}=13.278 \mathrm{kip} \mathrm{ft}$
Mu.y.max $/ \phi \mathrm{Mn}_{\mathrm{n}}=0.018$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Foundation analysis \& design (ACl 318) in accordance with $\mathrm{ACl} 318-14$

FOOTING ANALYSIS

Length of foundation
Width of foundation
Foundation area
Depth of foundation
Depth of soil over foundation
Density of concrete
$L_{x}=5 \mathrm{ft}$
$L_{y}=5 \mathrm{ft}$
$A=L_{x} \times L_{y}=25 \mathrm{ft}^{2}$
$\mathrm{h}=14$ in
$h_{\text {soil }}=18$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y-axis

Soil properties

Net allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
Live surcharge load
$\mathrm{I}_{\mathrm{x} 1}=6.00$ in
$\mathrm{l}_{\mathrm{y} 1}=6.00$ in
$\mathrm{x}_{1}=30.00$ in
$y_{1}=30.00$ in
qallow_Net = 2.5 ksf using a soil factor of safety, FS soil, of 3
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi b=30.0 \mathrm{deg}$
$\delta_{b b}=\mathbf{3 0 . 0}$ deg
$\tan (\delta \mathrm{bb})=0.577$
FLsur $=\mathbf{1 0 0}$ psf

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Self weight
Soil weight

Column no. 1 loads

Dead load in z
Live load in z
Snow load in z
$F_{\text {Dz1 }}=12.6$ kips
$\mathrm{F}_{\text {swt }}=\mathrm{h} * \gamma_{\text {conc }}=175 \mathrm{psf}$
$F_{\text {soil }}=h_{\text {soil }}{ }^{*} \gamma_{\text {soil }}=\mathbf{1 8 0} \mathrm{psf}$
$\mathrm{F}_{\mathrm{Lz} 1}=\mathbf{2 6 . 5}$ kips
$\mathrm{Fsz1}^{1}=27.7 \mathrm{kips}$

Footing analysis for soil and stability
Load combinations per ASCE 7-16
1.0D (0.330)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.775)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.45 \mathrm{~W}(0.982)$
Combination 12 results: $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.45 \mathrm{~W}$

Forces on foundation

Force in z-axis

Moments on foundation

Moment in x-axis, about x is 0

Moment in y -axis, about y is 0

Uplift verification
Vertical force
$\mathrm{F}_{\mathrm{dz}}=\mathbf{6 4} \mathrm{kips}$
PASS - Foundation is not subject to uplift

Bearing resistance

Eccentricity of base reaction
Eccentricity of base reaction in x-axis
$\mathrm{e}_{\mathrm{dx}}=\mathrm{Mdx}_{\mathrm{d}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{0} \mathrm{in}$
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{d} y}=\mathrm{Mdy}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0}$ in
Pad base pressures

Minimum base pressure
Maximum base pressure
Allowable bearing capacity
Allowable bearing capacity

$$
\begin{aligned}
& q_{1}=F_{d z}^{*}\left(1-6 \text { * } e_{d x} / L_{x}-6 \text { * } e_{d y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=2.56 \mathrm{ksf} \\
& \mathrm{q}_{2}=\mathrm{Fdz}^{*}\left(1-6^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}+6^{*}{ }^{\text {edy }} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=\mathbf{2 . 5 6} \mathrm{ksf} \\
& \mathrm{q}_{3}=\mathrm{F}_{\mathrm{dz}}{ }^{*}\left(1+6^{*} \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6^{*}{ }^{*} \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}}{ }^{*} \mathrm{~L}_{\mathrm{y}}\right)=2.56 \mathrm{ksf} \\
& q_{4}=F_{d z}^{*}\left(1+6{ }^{*} e_{d x} / L_{x}+6{ }^{*} e_{d y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=2.56 \mathrm{ksf} \\
& \mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=2.56 \mathrm{ksf} \\
& \mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{2 . 5 6} \mathrm{ksf} \\
& \text { qallow }=\text { qallow_Net }+\left(\left(h+h_{\text {soil }}\right) * \gamma_{\text {soil }}\right) / F S_{\text {soil }}=2.607 \mathrm{ksf} \\
& \text { qmax / qallow = } 0.982
\end{aligned}
$$

PASS - Allowable bearing capacity exceeds design base pressure
FOOTING DESIGN (ACl318)
In accordance with $\mathrm{ACl} 318-14$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section C1 Pad Footing (F3)				Sheet no./rev. 3	
	Calc. by BJW	$\begin{array}{\|l} \text { Date } \\ \text { 2/24/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
Cover to reinforcement
Concrete type
Concrete modification factor
Column type

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.129)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}(0.421)$
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}(0.522)$
Combination 3 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}$

Forces on foundation

Ultimate force in z-axis

Moments on foundation

Ultimate moment in x -axis, about x is 0

Ultimate moment in y -axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis

Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\mathrm{f}^{\prime} \mathrm{c}=\mathbf{4 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$
ε ty $=0.00200$
Cnom = 3 in
Normal weight
$\lambda=1.00$
Concrete
$F_{u z}=\gamma \mathrm{D}$ * ${ }^{*}\left(F_{\text {swt }}+F_{\text {soiil }}\right)+\gamma \mathrm{L}^{*}$ A * FLsur $+\gamma \mathrm{D}$ * $\mathrm{F}_{\mathrm{Dz} 1}+\gamma \mathrm{L}$ * $\mathrm{F}_{\mathrm{Lz} 1}+\gamma \mathrm{s}$ * $\mathrm{F}_{\mathrm{sz} 1}=$ 86.0 kips
$M_{u x}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{x} / 2\right)+\gamma L^{*} A^{*} F_{\text {Lsur }}{ }^{*} L_{x} / 2+\gamma D^{*}\left(F_{D z 1}{ }^{*} x_{1}\right)+$ $\gamma L^{*}\left(F_{L 21}^{*} x_{1}\right)+\gamma S^{*}\left(F_{s z 1}{ }^{*} x_{1}\right)=215.0 \mathrm{kip} \mathrm{ft}^{*}$
$M_{u y}=\gamma D^{*}\left(\mathrm{~A}^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{y} / 2\right)+\gamma L^{*} \mathrm{~A}^{*} \mathrm{~F}_{\text {Lsur }}{ }^{*} \mathrm{~L}_{\mathrm{y}} / 2+\gamma \mathrm{D}$ * $\left(\mathrm{F}_{\mathrm{Dz1}}{ }^{*} \mathrm{y} 1\right)+$ $\gamma \mathrm{L}$ * $\left(\mathrm{FLz}_{\mathrm{z} 1}{ }^{*} \mathrm{y}_{1}\right)+\gamma \mathrm{s}^{*}\left(\mathrm{Fs}_{\mathrm{s} 1}{ }^{*} \mathrm{y}_{1}\right)=\mathbf{2 1 5 . 0} \mathbf{~ k i p _ f t}$
$e_{u x}=M u x / F_{u z}-L_{x} / 2=\mathbf{0}$ in
$e_{u y}=M_{u y} / F_{u z}-L_{y} / 2=\mathbf{0}$ in

$$
\begin{aligned}
& q_{u 1}=F_{u z}^{*}\left(1-6 \text { * } e_{u x} / L_{x}-6 \text { * } e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=3.441 \mathrm{ksf} \\
& q_{u 2}=F_{u z}{ }^{*}\left(1-6{ }^{*} e_{u x} / L_{x}+6{ }^{*} e_{u y} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=3.441 \mathrm{ksf} \\
& q u 3=F_{u z}{ }^{*}\left(1+6{ }^{*} e_{u x} / L_{x}-6{ }^{*} e_{u y} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=3.441 \mathrm{ksf} \\
& q u 4=F_{u z}^{*}\left(1+6{ }^{*} e_{u x} / L_{x}+6 \text { * } \text { euy }^{\prime} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=3.441 \mathrm{ksf} \\
& q_{u m i n}=\min \left(q_{u} 1, q_{u} 2, q_{u 3}, q_{u 4}\right)=3.441 \mathrm{ksf} \\
& q_{u m a x}=\max \left(q_{u}, q_{u 2}, q_{u 3}, q_{u 4}\right)=3.441 \mathrm{ksf}
\end{aligned}
$$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Moment design, x direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, x direction

Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity

PASS - Maximum permissible reinforcement spacing exceeds actual spacing
$M_{u . x . m a x}=\mathbf{3 6 . 1 5 2}$ kip_ft
5 No. 6 bottom bars (13.3 in c/c)
Asx.bot.prov $=2.2$ in 2
As.min $=0.0018$ * Ly * $\mathrm{h}=1.512 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$S_{\max }=\min \left(2^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18$ in
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}-\phi$ x.bot $/ 2=10.625 \mathrm{in}$
$\mathrm{a}=$ Asx.bot.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85^{*} \mathrm{f}^{\prime} \mathrm{c}\right.$ * $\left.\mathrm{Ly}^{\prime}\right)=\mathbf{0 . 6 4 7}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.761 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * $\mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 8 8 7}$
$\varepsilon_{\text {min }}=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}_{\mathrm{n}}=$ Asx.bot.prov $^{*} \mathrm{f}_{\mathrm{y}}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)=113.316 \mathrm{kip} \mathrm{ft}$
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) /(0.005-\varepsilon t y), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{ff}^{*} \mathrm{Mn}_{\mathrm{n}}=101.985 \mathrm{kip} \mathrm{ft}$
$M_{\text {u.x.max }} / \phi \mathrm{Mn}_{\mathrm{n}}=0.354$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . x}=20.38$ kips
$\mathrm{d} v=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}-\phi_{\mathrm{x} . \text { bot }} / 2=10.625 \mathrm{in}$
$\phi v=0.75$
$\mathrm{V}_{\mathrm{n}}=2$ * λ * $\sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} * 1 \mathrm{psi}\right)^{*} \mathrm{Ly}^{*} \mathrm{~d}_{\mathrm{v}}=80.638 \mathrm{kips}$
$\phi V_{n}=\phi v * V_{n}=60.479$ kips
$V_{u . x} / \phi V_{n}=0.337$
PASS - Design shear capacity exceeds ultimate shear load

Shear diagram, y axis (kips)

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)
$S_{\max }=\min \left(2^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, y direction

Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity
$M_{\text {u.y.max }}=\mathbf{3 6 . 1 5 2}$ kip_ft
5 No. 6 bottom bars (13.3 in c/c)
Asy.bot.prov $=2.2$ in 2
As.min $=0.0018$ * $L_{x}{ }^{*} h=1.512 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{d}=\mathrm{h}-$ Cnom - фx.bot $-\phi y$ b.bot $/ 2=9.875$ in
$\mathrm{a}=$ Asy.bot.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85^{*} \mathrm{f}^{\prime} \mathrm{c}{ }^{*} \mathrm{~L}_{\mathrm{x}}\right)=\mathbf{0 . 6 4 7}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.761 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * $\mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 5 9 2}$
$\varepsilon_{\min }=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=$ Asy.bot.prov * fy * $(\mathrm{d}-\mathrm{a} / 2)=105.066 \mathrm{kip} \mathrm{ft}$
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon \mathrm{t}-\varepsilon \mathrm{ty}) /(0.005-\varepsilon \mathrm{ty}), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}^{*} \mathrm{Mn}_{\mathrm{n}}=94.56 \mathrm{kip} \mathrm{ft}$
Mu.y.max $/ \phi \mathrm{Mn}_{\mathrm{n}}=0.382$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . y}=20.38$ kips
$\mathrm{d} v=\mathrm{h}-\mathrm{Cnom}-\phi x$. bot $-\phi y$.bot $/ 2=9.875$ in
$\phi v=0.75$
$V_{\mathrm{n}}=2$ * $\lambda^{*} \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} \text { * } 1 \mathrm{psi}\right)^{*} \mathrm{~L}_{\mathrm{x}}{ }^{*} \mathrm{dv}=74.946 \mathrm{kips}$
$\phi V_{n}=\phi v * V_{n}=56.209$ kips
$\mathrm{V}_{\text {u.y }} / \phi \mathrm{V}_{\mathrm{n}}=0.363$
PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
$\mathrm{dv2}=10.25 \mathrm{in}$
$\mathrm{I}_{\mathrm{xp}}=16.250$ in
$\mathrm{l}_{\mathrm{yp}}=16.250$ in
$b_{o}=2$ * $\left(l_{x 1}+d_{v 2}\right)+2^{*}\left(l_{y} 1+d_{v 2}\right)=65.000$ in
$A_{p}=\left.\left.\right|_{x, \text { perim }}{ }^{*}\right|_{y, \text { perim }}=264.062 \mathrm{in}^{2}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				$\begin{aligned} & \text { Sheet no./rev. } \\ & 6 \end{aligned}$	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/24/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Surcharge loaded area
Ultimate bearing pressure at center of shear area
Ultimate shear load

Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$A_{\text {sur }}=A_{p}-I_{x 1}{ }^{*} I_{y 1}=228.062$ in 2
qup.avg $=3.441 \mathrm{ksf}$

${ }^{*}$ FLsur - qup.avg ${ }^{*} A_{p}=66.041 \mathrm{kips}$
$v_{u g}=\max \left(F_{u p} /\left(b_{o}{ }^{*} d_{v 2}\right), 0 \mathrm{psi}\right)=99.123 \mathrm{psi}$
$\beta=l_{y 1} / I_{x}=1.00$
$\alpha_{s}=40$
$\left.V_{\text {cpa }}=(2+4 / \beta) * \lambda^{*} V_{\left(f f_{c}\right.} * 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}}{ }^{*} \mathrm{~d} v 2 / \mathrm{bo}+2\right){ }^{*} \lambda^{*} \sqrt{ }\left(\mathrm{f}_{\mathrm{c}}{ }^{*} 1 \mathrm{psi}\right)=525.425 \mathrm{psi}$
$\left.V_{\mathrm{cpc}}=4^{*} \lambda^{*} V^{\left(\mathrm{f}_{\mathrm{\prime}}{ }^{*} 1\right.} 1 \mathrm{psi}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\mathrm{V}_{\mathrm{cp}}=\min \left(\mathrm{V}_{\mathrm{cpa}}, \mathrm{V}_{\mathrm{cpb}}, \mathrm{V}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi v=0.75$
$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{cp}}=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi \mathrm{v}{ }^{*} \mathrm{~V}_{\mathrm{n}}=189.737 \mathrm{psi}$
$\mathrm{Vug}_{\mathrm{g}} / \phi \mathrm{V}_{\mathrm{n}}=0.522$

PASS - Design shear stress capacity exceeds ultimate shear stress load

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Foundation analysis \& design (ACl 318) in accordance with $\mathrm{ACl} 318-14$

FOOTING ANALYSIS

Length of foundation
Width of foundation
Foundation area
Depth of foundation
Depth of soil over foundation
Density of concrete
$L_{x}=5 \mathrm{ft}$
$\mathrm{L}_{y}=5 \mathrm{ft}$
$A=L_{x} \times L_{y}=25 \mathrm{ft}^{2}$
$h=14$ in
$h_{\text {soil }}=18$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y-axis

Soil properties

Net allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
Live surcharge load
$\mathrm{I}_{\mathrm{x} 1}=10.00$ in
$\mathrm{l}_{\mathrm{y} 1}=14.00 \mathrm{in}$
$\mathrm{X}_{1}=30.00$ in
$y_{1}=30.00$ in
qallow_Net $=3.325$ ksf using a soil factor of safety, FS soil, of 3
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi b=\mathbf{3 0 . 0} \mathrm{deg}$
$\delta_{\mathrm{bb}}=\mathbf{3 0 . 0}$ deg
$\tan (\delta \mathrm{b})=0.577$
FLsur $=\mathbf{5 0} \mathrm{psf}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.2	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 2 / 25 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Self weight
Soil weight

Column no. 1 loads

Dead load in z
Live load in z
Snow load in z
Dead load in y
Live load in y
Wind load in y
Seismic load in y
$\mathrm{F}_{\text {swt }}=\mathrm{h} * \gamma_{\text {conc }}=175 \mathrm{psf}$
$F_{\text {soil }}=h_{\text {soil }}{ }^{*} \gamma_{\text {soil }}=\mathbf{1 8 0} \mathrm{psf}$
$F_{\text {Dz1 }}=30.0$ kips
$\mathrm{F}_{\mathrm{Lz} 1}=\mathbf{2 0 . 0}$ kips
$\mathrm{Fsz1}_{\mathrm{s}}=7.6 \mathrm{kips}$
$F_{\text {Dy1 }}=0.2 \mathrm{kips}$
$F_{\text {Ly } 1}=1.2 \mathrm{kips}$
$\mathrm{Fwy}_{\mathrm{y} 1}=4.3 \mathrm{kips}$
$F_{\text {Ey } 1}=8.0 \mathrm{kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.456)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.724)$
$1.0 \mathrm{D}+1.0 \mathrm{Lr}(0.456)$
$1.0 \mathrm{D}+1.0 \mathrm{~S}(0.545)$
$1.0 \mathrm{D}+1.0 \mathrm{R}(0.456)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}(0.657)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(0.723)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}(0.657)$
$1.0 \mathrm{D}+0.6 \mathrm{~W}(0.498)$
$(1.0+0.14$ * Sds) $D+0.7 E(0.607)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}+0.45 \mathrm{~W}(0.688)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.45 \mathrm{~W}(0.754)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}+0.45 \mathrm{~W}(0.688)$
$(1.0+0.10$ * $\operatorname{Sbs}) D+0.75 L+0.75 S+0.525 E(0.834)$
$0.6 \mathrm{D}+0.6 \mathrm{~W}(0.315)$
(0.6-0.14 * Sds)D + 0.7E (0.538)

Combination 14 results: $(1.0+0.10$ * Soss $) \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.525 \mathrm{E}$

Forces on foundation

Force in y-axis
Force in z -axis

Moments on foundation

Moment in x -axis, about x is 0

Moment in y -axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dy}}=\gamma \mathrm{D}{ }^{*} \mathrm{~F}_{\mathrm{Dy} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Ly} 1}+\gamma \mathrm{E}{ }^{*} \mathrm{~F}_{\mathrm{Ey} 1}=5.3 \mathrm{kips}$
 64.2 kips
$M_{d x}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right) * L_{x} / 2\right)+\gamma L^{*} A^{*} F_{\text {Lsur }}{ }^{*} L_{x} / 2+\gamma D^{*}\left(F_{D z 1}{ }^{*} x_{1}\right)+$ $\gamma \mathrm{L}{ }^{*}\left(\mathrm{~F}_{\mathrm{Lz} 1}{ }^{*} \mathrm{x}_{1}\right)+\gamma \mathrm{S}{ }^{*}\left(\mathrm{Fs}_{\mathrm{z} 1}{ }^{*}{ }^{*} \mathrm{X}_{1}\right)=160.5 \mathrm{kip} \mathrm{ft}$
$M_{d y}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right)\right.$ * $\left.L_{y} / 2\right)+\gamma L^{*} A^{*} F_{\text {Lsur }}{ }^{*} L_{y} / 2+\gamma D^{*}\left(F_{D z 1}\right.$ * $\left.\mathrm{y}_{1}+\mathrm{F}_{\mathrm{Dy} 1}{ }^{*} \mathrm{~h}\right)+\gamma \mathrm{L}$ * $\left(\mathrm{F}_{\mathrm{Lz} 1}{ }^{*} \mathrm{y}_{1}+\mathrm{F}_{\mathrm{Ly} 1}{ }^{*} \mathrm{~h}\right)+\gamma \mathrm{S}^{*}\left(\mathrm{~F}_{\mathrm{Sz} 1}{ }^{*} \mathrm{y}_{1}\right)+\gamma \mathrm{E}$ * $\left(\mathrm{F}_{\mathrm{Ey} 1}{ }^{*} \mathrm{~h}\right)=166.6$ kip_ft
$\mathrm{F}_{\mathrm{dz}}=64.182 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/25/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Stability against overturning in y direction, moment about y is L_{y}

Overturning moment
Resisting moment

Factor of safety

Stability against sliding

Resistance due to base friction
Stability against sliding in y direction
Total sliding resistance
Factor of safety

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum base pressure
Maximum base pressure
Allowable bearing capacity
Allowable bearing capacity

FOOTING DESIGN (ACl318)

In accordance with ACl318-14

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
Cover to reinforcement
Concrete type
Concrete modification factor
Column type

Analysis and design of concrete footing

Load combinations per ASCE 7-16
1.4D (0.208)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$ (0.336)

$M_{R y L}=-1^{*}\left(\gamma \mathrm{D} *\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{y} / 2\right)+\gamma L^{*} A * F_{\text {Lsur }}{ }^{*} L_{y} / 2\right)+\gamma \mathrm{D}$ * $\left(F_{D z 1}\right.$ *
$\left.\left(\mathrm{y}_{1}-\mathrm{L}_{\mathrm{y}}\right)\right)+\gamma \mathrm{L}{ }^{*}\left(\mathrm{~F}_{\mathrm{Lz} 1}{ }^{*}\left(\mathrm{y}_{1}-\mathrm{L}_{\mathrm{y}}\right)\right)+\gamma \mathrm{s}^{*}\left(\mathrm{Fs}_{\mathrm{z} 1}{ }^{*}\left(\mathrm{y}_{1}-\mathrm{L}_{\mathrm{y}}\right)\right)=\mathbf{- 1 6 0 . 4 6} \mathrm{kip} \mathrm{ft}$
abs(MryL $/$ MotyL) $=26.057$
PASS - Overturning moment safety factor exceeds the minimum of 1.00

FRrriction $=\max \left(\mathrm{F}_{\mathrm{dz}}, 0 \mathrm{kN}\right){ }^{*} \tan \left(\delta_{\mathrm{bb}}\right)=\mathbf{3 7 . 0 5 6} \mathrm{kips}$
$F_{\text {Ry }}=$ Frfriction $=37.056 \mathrm{kips}$
abs (Fry / Fdy) = 7.02
PASS - Sliding factor of safety exceeds the minimum of 1.00
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
$e_{d y}=M_{d y} / F_{d z}-L_{y} / 2=\mathbf{1 . 1 5 1}$ in

$$
\begin{aligned}
& \mathrm{q}_{1}=\mathrm{Fdz}^{*}\left(1-6^{*} \mathrm{edx}_{\mathrm{d}} / L_{\mathrm{x}}-6{ }^{*} \text { edy } / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=2.272 \mathrm{ksf} \\
& \mathrm{q}_{2}=\mathrm{Fdz}_{\mathrm{dz}}{ }^{*}\left(1-6{ }^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}+6^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=2.863 \mathrm{ksf} \\
& \mathrm{q}_{3}=\mathrm{Fdz}_{\mathrm{dz}}{ }^{*}\left(1+6^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}-6^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=2.272 \mathrm{ksf} \\
& q_{4}=F_{d z}^{*}\left(1+6{ }^{*} e_{d x} / L_{x}+6{ }^{*} e_{d y} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=2.863 \mathrm{ksf} \\
& \mathrm{q}_{\min }=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{2 . 2 7 2} \mathrm{ksf} \\
& \mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=2.863 \mathrm{ksf}
\end{aligned}
$$

qallow $=$ qallow_Net $+\left(\left(h+h_{\text {soil }}\right) * \gamma_{\text {soil }}\right) / F S_{\text {soil }}=3.432 \mathrm{ksf}$
$q_{\text {max }} /$ qallow $=0.834$
PASS - Allowable bearing capacity exceeds design base pressure
$\mathrm{f}^{\prime} \mathrm{c}=\mathbf{4 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$
ε ty $=0.00200$
Cnom = $\mathbf{3}$ in
Normal weight
$\lambda=1.00$
Concrete

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section C1 Pad Footing (F3)				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l} \text { Date } \\ \text { 2/25/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

```
\(1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}(0.355)\)
\(1.2 D+1.6 L+0.5 R(0.336)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{Lr}(0.277)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{~S}(0.337)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{R}(0.277)\)
\(1.2 \mathrm{D}+1.6 \mathrm{Lr}+0.5 \mathrm{~W}(0.176)\)
\(1.2 \mathrm{D}+1.6 \mathrm{~S}+0.5 \mathrm{~W}(0.237)\)
\(1.2 \mathrm{D}+1.6 \mathrm{R}+0.5 \mathrm{~W}(0.176)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+0.5 \mathrm{Lr}+1.0 \mathrm{~W}(0.273)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+0.5 \mathrm{~S}+1.0 \mathrm{~W}(0.292)\)
\(1.2 \mathrm{D}+1.0 \mathrm{~L}+0.5 \mathrm{R}+1.0 \mathrm{~W}(0.273)\)
\((1.2+0.2\) * Sbs) \(\mathrm{D}+1.0 \mathrm{~L}+0.2 \mathrm{~S}+1.0 \mathrm{E}(0.305)\)
\(0.9 \mathrm{D}+1.0 \mathrm{~W}(0.130)\)
(0.9-0.2 * Sos)D + 1.0E (0.109)
```


Combination 3 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}$

Forces on foundation

Ultimate force in y-axis
Ultimate force in z-axis

Moments on foundation

Ultimate moment in x -axis, about x is 0

Ultimate moment in y -axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis

Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\mathrm{F}_{\mathrm{uy}}=\gamma \mathrm{D}{ }^{*} \mathrm{FDy1}_{\mathrm{D}}+\gamma \mathrm{L}$ * $\mathrm{F}_{\mathrm{Ly} 1}=2.2 \mathrm{kips}$
 84.4 kips
$M_{u x}=\gamma \mathrm{D}$ * $\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{x} / 2\right)+\gamma L^{*} A^{*} F_{\text {Lsur }}{ }^{*} L_{x} / 2+\gamma \mathrm{D}{ }^{*}\left(F_{D z 1}{ }^{*} X_{1}\right)+$ $\gamma \mathrm{L}{ }^{*}\left(\mathrm{~F}_{\mathrm{Lz} 1}{ }^{*} \mathrm{x}_{1}\right)+\gamma \mathrm{S}^{*}\left(\mathrm{Fs}_{\mathrm{s} 1}{ }^{*} \mathrm{X}_{1}\right)=211.1 \mathrm{kip} \mathrm{ft}$
$M_{u y}=\gamma \mathrm{D}$ * $\left(\mathrm{A}^{*}\left(\mathrm{~F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right)\right.$ * $\left.\mathrm{Ly}_{\mathrm{y}} / 2\right)+\gamma \mathrm{L}$ * $\mathrm{A}^{*} \mathrm{~F}_{\text {Lsur }}{ }^{*} \mathrm{~L}_{y} / 2+\gamma \mathrm{D}$ * ($\mathrm{F}_{\mathrm{Dz} 1}$ * $\left.\mathrm{y} 1+\mathrm{FDy}_{1}{ }^{*} \mathrm{~h}\right)+\gamma \mathrm{L}$ * $\left(\mathrm{F}_{\mathrm{Lz} 1}{ }^{*} \mathrm{y}_{1}+\mathrm{F}_{\mathrm{Ly} 1}{ }^{*} \mathrm{~h}\right)+\gamma \mathrm{s}^{*}\left(\mathrm{~F}_{\mathrm{sz} 1}{ }^{*} \mathrm{y} 1\right)=\mathbf{2 1 3 . 6} \mathrm{kip} \mathrm{ft}$
$e_{u x}=M_{u x} / F_{u z}-L_{x} / 2=\mathbf{0}$ in
$\mathrm{e}_{u y}=\mathrm{Muy}_{\mathrm{u}} / \mathrm{Fuz}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=0.357 \mathrm{in}$
$q_{u 1}=F_{u z}^{*}\left(1-6{ }^{*} e_{u x} / L_{x}-6{ }^{*} e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=3.257 \mathrm{ksf}$
$q_{u 2}=F_{u z}^{*}\left(1-6\right.$ * $e_{u x} / L_{x}+6$ * $\left.e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=3.499 \mathrm{ksf}$
$q_{u 3}=F_{u z}^{*}\left(1+6{ }^{*} e_{u x} / L_{x}-6{ }^{*} e_{u y} / L_{y}\right) /\left(L_{x}{ }^{*} L_{y}\right)=3.257 \mathrm{ksf}$
qu4 $=\mathrm{Fuz}^{*}\left(1+6{ }^{*}\right.$ eux $^{*} / L_{x}+6^{*}$ euy $\left./ L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=3.499 \mathrm{ksf}$
$q u m i n=\min \left(q_{u 1}, q_{u 2}, q u 3, q_{u 4}\right)=3.257 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=3.499 \mathrm{ksf}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Moment design, x direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, x direction
Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity

Smax $=\min \left(2^{*} h, 18\right.$ in $)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Mu.x.max $=\mathbf{3 1 . 1 6 3}$ kip_ft
5 No. 6 bottom bars (13.3 in c/c)
Asx.bot.prov $=2.2$ in 2
$A_{s . \min }=0.0018{ }^{*}$ Ly $^{*} h=1.512 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}-\phi \mathrm{\phi}$. bot $/ 2=10.625 \mathrm{in}$
$\mathrm{a}=$ Asx.bot.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85^{*} \mathrm{f}_{\mathrm{c}} \mathrm{c}\right.$ * Ly$)=\mathbf{0 . 6 4 7}$ in
$\beta 1=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.761 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * d / c-0.003 $=\mathbf{0 . 0 3 8 8 7}$
ε min $=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{A}_{\mathrm{sx} . \mathrm{bot} . \mathrm{prov}}{ }^{*} \mathrm{fy}_{\mathrm{y}}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)=113.316 \mathrm{kip} \mathrm{ft}$
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) /(0.005-\varepsilon t y), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{ft}^{*} \mathrm{Mn}_{\mathrm{n}}=101.985 \mathrm{kip} \mathrm{ft}$
Mu.x.max / $\phi \mathrm{Mn}_{\mathrm{n}}=0.306$
PASS - Design moment capacity exceeds ultimate moment load
$V_{\text {u.x }}=18.1$ kips
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom}-\phi_{\mathrm{y} . \text { bot }}-\phi_{\mathrm{x}} \mathrm{bot} / 2=9.875 \mathrm{in}$
$\phi v=0.75$
$V_{n}=2 * \lambda * \sqrt{ }\left(f^{\prime} c{ }^{*} 1 \mathrm{psi}\right){ }^{*} \mathrm{Ly}^{*} \mathrm{~d}_{\mathrm{v}}=74.946 \mathrm{kips}$
$\phi V_{n}=\phi v * V_{n}=56.209$ kips
$\mathrm{V}_{\mathrm{u} . \mathrm{x}} / \phi \mathrm{V}_{\mathrm{n}}=0.322$
PASS - Design shear capacity exceeds ultimate shear load
Shear diagram, y axis (kips)

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev.6	
	Calc. by BJW	$\begin{aligned} & \text { Date } \\ & \text { 2/25/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)
$S_{\max }=\min \left(2^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, y direction

Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity
Mu.y.max = $\mathbf{2 7 . 2}$ kip_ft
5 No. 6 bottom bars (13.3 in c/c)
Asy.bot.prov $=2.2$ in 2
$A_{s . \min }=0.0018{ }^{*} L_{x}{ }^{*} h=1.512 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}-\phi x$ bot $-\phi y$.bot $/ 2=9.875$ in
$\mathrm{a}=$ Asy.bot.prov * $\mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}_{\mathrm{c}} \mathrm{c}{ }^{*} \mathrm{~L}_{\mathrm{x}}\right)=0.647$ in
$\beta 1=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.761 \mathrm{in}$
$\varepsilon t=0.003^{*} \mathrm{~d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 5 9 2}$
$\varepsilon_{\text {min }}=0.004=\mathbf{0 . 0 0 4 0 0}$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}_{\mathrm{n}}=$ Asy.bot.prov $^{*} \mathrm{fy}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=105.066 \mathrm{kip} \mathrm{ft}$
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) /(0.005-\varepsilon t y), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}{ }^{*} \mathrm{Mn}_{\mathrm{n}}=94.56 \mathrm{kip} \mathrm{ft}$
$M_{u . \text {.. }}^{\text {max }} / ~ \phi \mathrm{Mn}_{\mathrm{n}}=0.288$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . y}=16.221$ kips
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}-$ фy.bot $/ 2=10.625$ in
$\phi v=0.75$
$V_{n}=2 * \lambda * \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}$ * 1 psi$)^{*} \mathrm{~L}_{\mathrm{x}}{ }^{*} \mathrm{~d}_{\mathrm{v}}=80.638 \mathrm{kips}$
$\phi V_{n}=\phi v{ }^{*} V_{n}=60.479$ kips
$\mathrm{V}_{\text {u.y }} / \phi \mathrm{V}_{\mathrm{n}}=0.268$
PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{dv} 2=10.25$ in
$\mathrm{I}_{\mathrm{xp}}=20.250$ in
$\mathrm{l}_{\mathrm{yp}}=\mathbf{2 4 . 2 5 0}$ in
$b_{o}=2^{*}\left(l_{x 1}+d_{v 2}\right)+2^{*}\left(l_{y} 1+d_{v 2}\right)=89.000$ in
$A_{p}=\left.l_{x, \text { perim }}{ }^{*}\right|_{y, \text { perim }}=491.062 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-\left.I_{x 1}{ }^{*}\right|_{y 1}=351.062$ in 2

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F3)				Sheet no./rev. 7	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Ultimate bearing pressure at center of shear area
Ultimate shear load

Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
qup.avg $=3.475 \mathrm{ksf}$

* FLsur - qup.avg ${ }^{*} A_{p}=61.386 \mathrm{kips}$
$v_{u g}=\max \left(F_{u p} /\left(b_{o}{ }^{*} d_{v 2}\right), 0 \mathrm{psi}\right)=67.291 \mathrm{psi}$
$\beta=l_{y 1} / I_{x} 1=1.40$
$\alpha_{s}=40$
$V_{\text {cpa }}=(2+4 / \beta) * \lambda * \sqrt{ }\left(f^{\prime}{ }^{*}{ }^{*} 1 \mathrm{psi}\right)=307.193 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}}{ }^{*} \mathrm{dv2}^{2} / \mathrm{bo}+2\right) * \lambda^{*}\left(\mathrm{f}_{\mathrm{c}}{ }^{*} 1 \mathrm{psi}\right)=417.847 \mathrm{psi}$
$\mathrm{V}_{\mathrm{cpc}}=4{ }^{*} \lambda^{*} \sqrt{ }\left(\mathrm{f}_{\mathrm{c}}{ }^{*} 1 \mathrm{psi}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\mathrm{V}_{\mathrm{cp}}=\min \left(\mathrm{V}_{\mathrm{cpa}}, \mathrm{V}_{\mathrm{cpb}}, \mathrm{V}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi v=0.75$
$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi V_{n}=\phi v{ }^{*} V_{n}=189.737 \mathrm{psi}$
$\mathrm{Vug}_{\mathrm{g}} / \phi \mathrm{V}_{\mathrm{n}}=0.355$
PASS - Design shear stress capacity exceeds ultimate shear stress load

PROJECT: Yaroslavsky Residence
SUBJECT: Central Wall Load Takedown
DESIGN BY: BJW

PROJECT NUMBER: 8119
DATE: 2021-03-02 NOTES: Central shear wall supporting high roof and living room - MAIN LEVEL

GEOMETRY:

Tributary area
Wall length

SURFACE LOADS:

Dead load
Superimposed dead load Live load
Snow load

DL =	0
SDL =	30
LL =	40
SL =	0

LINE LOADS:

Dead load	DL $=$	0	plf	0	klf
Superimposed dead load	$S D L=$	1028.571	plf	1.029	klf
Live load	$L L=$	1371.429	plf	1.371	klf
Snow load	$S L=$	0	plf	0	klf

PROJECT: Yaroslavsky Residence
SUBJECT: Central Wall Load Takedown
DESIGN BY: BJW

PROJECT NUMBER: 8119
DATE: 2021-03-02

NOTES: Central shear wall supporting high roof and living room - UPPER LEVEL

GEOMETRY:

Wall length

$$
\mathrm{L}=5.83 \mathrm{ft}
$$

POINT LOADS (FROM TEDDS OUTPUT):

Dead load
Superimposed dead load
Live load
Snow load
Seismic load

LINE LOADS:

Dead load	DL =	0	plf	0
Superimposed dead load	SDL $=$	2022.857	plf	2.023
Live load	LL =	1422.857	plf	1.423
Snow load	SL =	805.714	plf	0.806
Seismic load	$\mathrm{EQ}=$	1371.429	plf	1.371

	Line Load Total	
SDL	3.05	klf
LL	2.79	klf
SL	0.81	klf
EQ	1.37	klf

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Central Wall Footing (F4)				Sheet no./rev.1	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Foundation analysis \& design (ACI318) in accordance with ACl318-14

FOOTING ANALYSIS

Length of foundation
Width of foundation
Foundation area
Depth of foundation
Depth of soil over foundation
Density of concrete

$$
\begin{aligned}
& L_{x}=1 \mathrm{ft} \\
& L_{y}=3.5 \mathrm{ft} \\
& \mathrm{~A}=\mathrm{L}_{x} \times \mathrm{L}_{y}=3.5 \mathrm{ft}^{2} \\
& \mathrm{~h}=\mathbf{1 4} \mathrm{in} \\
& \mathrm{~h}_{\text {soil }}=18 \mathrm{in} \\
& \gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

Wall no. 1 details

Width of wall
position in y-axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
Self weight
Soil weight
$\mathrm{l}_{\mathrm{y} 1}=6$ in
$y_{1}=21$ in
qallow_Gross = 2.5 ksf
$\gamma_{\text {soil }}=125.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi \mathrm{b}=\mathbf{3 0 . 0} \mathrm{deg}$
$\delta_{b b}=19.3 \mathrm{deg}$
$\tan (\delta$ bь $)=0.350$
$\mathrm{F}_{\text {swt }}=\mathrm{h} * \gamma_{\text {conc }}=175 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }}{ }^{*} \gamma_{\text {soil }}=187.5 \mathrm{psf}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Central Wall Footing (F4)				Sheet no./rev.2	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/24/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Wall no. 1 loads per linear foot

Dead load in z
Live load in z
Snow load in z
Seismic load in z
$F_{\text {Dz1 }}=3.1 \mathrm{kips}$
$\mathrm{F}_{\mathrm{Lz1}}=2.8 \mathrm{kips}$
$F_{s z 1}=0.8 \mathrm{kips}$
$F_{E_{z 1}}=1.4 \mathrm{kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.494)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.812)$
$1.0 \mathrm{D}+1.0 \operatorname{Lr}(0.494)$
$1.0 \mathrm{D}+1.0 \mathrm{~S}(0.586)$
$1.0 \mathrm{D}+1.0 \mathrm{R}(0.494)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}(0.733)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(0.802)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}(0.733)$
$1.0 \mathrm{D}+0.6 \mathrm{~W}(0.494)$
$(1.0+0.14$ * Sbs) D $+0.7 E(0.668)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}+0.45 \mathrm{~W}(0.733)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.45 \mathrm{~W}(0.802)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}+0.45 \mathrm{~W}(0.733)$
$\left(1.0+0.10\right.$ * $\left.\mathrm{Sos}_{\mathrm{ds}}\right) \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.525 \mathrm{E}(0.931)$
$0.6 \mathrm{D}+0.6 \mathrm{~W}(0.296)$
(0.6-0.14 * Sds)D + 0.7E (0.341)

Combination 14 results: $\left(1.0+0.10\right.$ * Soss $\left.^{\prime}\right) \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.525 \mathrm{E}$
Forces on foundation per linear foot
Force in z-axis

Moments on foundation per linear foot

Moment in y -axis, about y is 0
$M_{d y}=\gamma \mathrm{D}$ * $\left(\mathrm{A}^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{y} / 2\right)+\gamma D^{*}\left(F_{D z 1}{ }^{*} y_{1}\right)+\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)+\gamma s^{*}$ $\left(F_{s z 1}{ }^{*} y_{1}\right)+\gamma E *\left(F_{E z 1}{ }^{*} y_{1}\right)=14.3$ kip_ft

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=8.146 \mathrm{kips}$
PASS - Foundation is not subject to uplift

Stability against sliding

Resistance due to base friction
$F_{\text {RFriction }}=\max \left(F_{\mathrm{dz}}, 0 \mathrm{kN}\right){ }^{*} \tan \left(\delta_{\mathrm{bb}}\right)=2.851 \mathrm{kips}$

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{d} y}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-L_{y} / 2=\mathbf{0 . 0 0 0}$ in

Strip base pressures

Minimum base pressure
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}}{ }^{*}\left(1-6\right.$ * $\left.\mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(L_{y}{ }^{*} 1 \mathrm{ft}\right)=\mathbf{2 . 3 2 7} \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}}{ }^{*}\left(1+6\right.$ * $\left.\mathrm{edy}_{\mathrm{dy}} / L_{y}\right) /\left(L_{y}{ }^{*} 1 \mathrm{ft}\right)=\mathbf{2 . 3 2 7} \mathrm{ksf}$ $\mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=2.327 \mathrm{ksf}$

STekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Central Wall Footing (F4)				Sheet no./rev. 3	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/24/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Maximum base pressure

Allowable bearing capacity
Allowable bearing capacity
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=2.327 \mathrm{ksf}$
qallow $=$ qallow_Gross $=2.5 \mathrm{ksf}$
$q_{\text {max }} /$ qallow $=0.931$
PASS - Allowable bearing capacity exceeds design base pressure

FOOTING DESIGN (ACl318)

In accordance with $\mathrm{ACl} 318-14$

Material details

Compressive strength of concrete
$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
Yield strength of reinforcement
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
Compression-controlled strain limit (21.2.2)
Ety $=0.00200$
Cover to reinforcement
Concrete type
Cnom = 3 in
Normal weight
Concrete modification factor
$\lambda=1.00$
Wall type
Concrete
Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.094)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$ (0.179)
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on foundation per linear foot

Ultimate force in z-axis
$F_{u z}=\gamma D^{*} A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right)+\gamma \mathrm{D}{ }^{*} F_{\mathrm{Dz} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Lz} 1}=9.6 \mathrm{kips}$
Moments on foundation per linear foot
Ultimate moment in y -axis, about y is 0
$M_{u y}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right) * L_{y} / 2\right)+\gamma D^{*}\left(F_{D z 1}{ }^{*} y_{1}\right)+\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)=16.9$
kip_ft

Eccentricity of base reaction

Eccentricity of base reaction in y-axis
euy $=$ Muy $/ F_{u z}-L_{y} / 2=0.000$ in
Strip base pressures
$q_{u 1}=F_{u z}^{*}\left(1-6\right.$ * $\left.e_{u y} / L_{y}\right) /\left(L_{y}\right.$ * 1 ft$)=2.756 \mathrm{ksf}$
$q_{u 2}=F_{u z}^{*}\left(1+6\right.$ * euy $\left./ L_{y}\right) /\left(L_{y}^{*} 1 \mathrm{ft}\right)=2.756 \mathrm{ksf}$
Minimum ultimate base pressure
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}\right)=2.756 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{\mathrm{u} 1}, \mathrm{quz}^{2}\right)=2.756 \mathrm{ksf}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section Central Wall Footing (F4)				Sheet no./rev.4	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (7.6.1.1)

Maximum spacing of reinforcement (7.7.2.3)

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(7.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, y direction
Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity

PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Mu.y.max $=2.614$ kip_ft
No. 5 bars at 12.0 in c/c bottom
Asy.bot.prov $=0.31 \mathrm{in}^{2}$
As.min $=0.0018$ * $L_{x}{ }^{*} h=0.302 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$S_{\text {max }}=\min \left(3^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18$ in
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}-$ фy.bot $/ 2=10.688$ in
$\mathrm{a}=$ Asy.bot.prov ${ }^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}{ }^{*} \mathrm{~L}_{\mathrm{x}}\right)=\mathbf{0 . 4 5 6} \mathrm{in}$
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.536$ in
$\varepsilon t=0.003$ * d/c-0.003 = 0.05678
$\varepsilon_{\text {min }}=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}=\mathrm{A}_{\text {sy.bot.prov }}{ }^{*} \mathrm{f}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=16.212 \mathrm{kip} \mathrm{ft}$
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon\right.\right.$ ty $) /(0.005-\varepsilon$ ty $\left.\left.), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}{ }^{*} \mathrm{Mn}_{\mathrm{n}}=14.591 \mathrm{kip} \mathrm{ft}$
Mu.y.max $/ \phi \mathrm{Mn}_{\mathrm{n}}=0.179$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . y}=1.416$ kips
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}-$ dy.bot $/ 2=10.688$ in
$\phi v=0.75$
$V_{n}=2 * \lambda * \sqrt{ }\left(f^{\prime} c * 1 p s i\right) * L_{x}{ }^{*} d_{v}=16.222$ kips
$\phi V_{n}=\phi v * V_{n}=12.167$ kips
$V_{\text {u.y }} / \phi V_{n}=0.116$
PASS - Design shear capacity exceeds ultimate shear load

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section Central Wall Footing (F4)				Sheet no./rev.5	
	Calc. by BW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 24 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Foundation analysis \& design (ACl 318) in accordance with $\mathrm{ACl} 318-14$

FOOTING ANALYSIS

Length of foundation
Width of foundation
Foundation area
Depth of foundation
Depth of soil over foundation
Density of concrete

$$
\begin{aligned}
& \mathrm{L}_{x}=\mathbf{3} \mathrm{ft} \\
& \mathrm{~L}_{y}=\mathbf{3} \mathrm{ft} \\
& \mathrm{~A}=\mathrm{L}_{x} \times \mathrm{L}_{\mathrm{y}}=\mathbf{9} \mathrm{ft}^{2} \\
& \mathrm{~h}=\mathbf{1 4} \mathrm{in} \\
& \mathrm{~h}_{\text {soil }}=\mathbf{1 8} \mathrm{in} \\
& \gamma_{\text {conc }}=\mathbf{1 5 0 . 0} \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y-axis

Soil properties

Net allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
Live surcharge load
$\mathrm{I}_{\mathrm{x} 1}=6.00$ in
$\mathrm{l}_{\mathrm{y} 1}=6.00$ in
$\mathrm{x}_{1}=18.00$ in
$y_{1}=18.00$ in
qallow_Net = 2.5 ksf using a soil factor of safety, FS soil, of 3
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi b=30.0 \mathrm{deg}$
$\delta_{b b}=\mathbf{3 0 . 0}$ deg
$\tan (\delta \mathrm{bb})=0.577$
FLsur $=\mathbf{1 0 0}$ psf

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev. 2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Self weight
Soil weight

Column no. 1 loads

Dead load in z
Live load in z
Seismic load in z
Footing analysis for soil and stability
Load combinations per ASCE 7-16
1.0D (0.211)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.354)$
$1.0 \mathrm{D}+1.0 \operatorname{Lr}(0.211)$
$1.0 \mathrm{D}+1.0 \mathrm{~S}(0.211)$
$1.0 \mathrm{D}+1.0 \mathrm{R}(0.211)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (0.319)
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(0.319)$
$1.0 D+0.75 L+0.75 R(0.319)$
$1.0 \mathrm{D}+0.6 \mathrm{~W}(0.211)$
$(1.0+0.14$ * Sbs) D $+0.7 E(0.476)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}+0.45 \mathrm{~W}(0.319)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.45 \mathrm{~W}(0.319)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}+0.45 \mathrm{~W}(0.319)$
$(1.0+0.10$ * $S d s) D+0.75 L+0.75 S+0.525 E(0.516)$
$0.6 \mathrm{D}+0.6 \mathrm{~W}$ (0.127)
(0.6-0.14 * Sos)D $+0.7 E(0.335)$

Combination 14 results: $(1.0+0.10$ * S ds $) \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}+0.525 \mathrm{E}$

Forces on foundation

Force in z-axis

Moments on foundation

Moment in x -axis, about x is 0

Moment in y -axis, about y is 0

Uplift verification

Vertical force

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures
$F_{\mathrm{dz}}=12.106 \mathrm{kips}$
PASS - Foundation is not subject to uplift
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0 \mathrm{in}$
$e_{d y}=M_{d y} / F_{d z}-L_{y} / 2=0 \mathrm{in}$
$F_{\mathrm{dz}}=\gamma \mathrm{D}{ }^{*} \mathrm{~A}^{*}\left(F_{\text {swt }}+F_{\text {soiil }}\right)+\gamma \mathrm{L}{ }^{*} \mathrm{~A}^{*} \mathrm{~F}_{\mathrm{Lsur}}+\gamma \mathrm{D}{ }^{*} \mathrm{~F}_{\mathrm{Dz} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Lz} 1}+\gamma \mathrm{E}{ }^{*} \mathrm{~F}_{\mathrm{Ez} 1}=$ 12.1 kips
$M_{d x}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right) * L_{x} / 2\right)+\gamma L^{*} A * F_{\text {Lsur }}{ }^{*} L_{x} / 2+\gamma \mathrm{D}$ * $\left(F_{D z 1}{ }^{*} x_{1}\right)+$ $\gamma L^{*}\left(F_{L 21}{ }^{*} x_{1}\right)+\gamma E{ }^{*}\left(F_{E z 1}{ }^{*} x_{1}\right)=18.2 \mathrm{kip} \mathrm{ft}$
$M_{d y}=\gamma \mathrm{D}$ * $\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{y} / 2\right)+\gamma L^{*} A$ * $F_{\text {Lsur }}{ }^{*} L_{y} / 2+\gamma \mathrm{D}$ * $\left(F_{D z 1}{ }^{*} y_{1}\right)+$ $\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)+\gamma E{ }^{*}\left(F_{E z 1}{ }^{*} y_{1}\right)=18.2 \mathrm{kip} \mathrm{ft}$
$q_{1}=F_{d z}^{*}\left(1-6{ }^{*} e_{d x} / L_{x}-6{ }^{*} e_{d y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.345 \mathrm{ksf}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Minimum base pressure
Maximum base pressure

Allowable bearing capacity

Allowable bearing capacity

FOOTING DESIGN (ACl318)

In accordance with ACl318-14

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
Cover to reinforcement
Concrete type
Concrete modification factor
Column type
Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.015)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \operatorname{Lr}(0.036)$
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}$ (0.036)
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on foundation

Ultimate force in z-axis

Moments on foundation

Ultimate moment in x -axis, about x is 0

Ultimate moment in y -axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure

$$
\begin{aligned}
& \mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}}^{*}\left(1-6^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}+6^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{\mathrm{x}}^{*} \mathrm{~L}_{\mathrm{y}}\right)=\mathbf{1 . 3 4 5} \mathrm{ksf} \\
& \mathrm{q}_{3}=\mathrm{F}_{\mathrm{dz}}^{*}\left(1+6^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}-6^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.345 \mathrm{ksf} \\
& \mathrm{q}_{4}=\mathrm{F}_{\mathrm{dz}}^{*}\left(1+6^{*} \mathrm{e}_{\mathrm{dx}} / L_{x}+6^{*} \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{x}^{*} \mathrm{~L}_{\mathrm{y}}\right)=\mathbf{1 . 3 4 5 \mathrm { ksf }} \\
& \mathrm{q}_{\min }=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=1.345 \mathrm{ksf} \\
& \mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=1.345 \mathrm{ksf}
\end{aligned}
$$

$q_{\text {allow }}=$ qallow_Net $+\left(\left(h+h_{\text {soil }}\right) * \gamma_{\text {soil }}\right) / F S_{\text {soil }}=2.607 \mathrm{ksf}$
$q_{\text {max }} /$ qallow $=0.516$
PASS - Allowable bearing capacity exceeds design base pressure
$\mathrm{f}^{\prime} \mathrm{c}=\mathbf{4 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$
ε ty $=0.00200$
Cnom = $\mathbf{3}$ in
Normal weight
$\lambda=1.00$
Concrete
$F_{u z}=\gamma \mathrm{D}$ * $\mathrm{A}^{*}\left(\mathrm{~F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right)+\gamma \mathrm{L}$ * $\mathrm{A}^{*} \mathrm{~F}_{\text {Lsur }}+\gamma \mathrm{D}{ }^{*} \mathrm{~F}_{\mathrm{Dz} 1}+\gamma \mathrm{L}{ }^{*} \mathrm{~F}_{\mathrm{Lz} 1}=11.3 \mathrm{kips}$
$M_{u x}=\gamma D^{*}\left(A^{*}\left(F_{\text {swt }}+F_{\text {soil }}\right){ }^{*} L_{x} / 2\right)+\gamma L^{*} A$ * $F_{\text {Lsur }}{ }^{*} L_{x} / 2+\gamma{ }^{*}\left(F_{D z 1}{ }^{*} x_{1}\right)+$ $\gamma \mathrm{L}$ * $\left(F_{\mathrm{Lz} 1}{ }^{*} \mathrm{X}_{1}\right)=\mathbf{1 7 . 0} \mathrm{kip} \mathrm{ft}$
 $\gamma L^{*}\left(F_{L z 1}{ }^{*} y_{1}\right)=17.0 \mathrm{kip}$ ft
$\mathrm{e}_{\mathrm{ux}}=\mathrm{Mux}^{\prime} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{0}$ in
euy $=M_{u y} / F_{u z}-L_{y} / 2=0$ in

$$
\begin{aligned}
& q_{u 1}=F_{u z}{ }^{*}\left(1-6^{*} e_{u x} / L_{x}-6^{*} e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.258 \mathrm{ksf} \\
& q_{u 2}=F_{u z}{ }^{*}\left(1-6^{*} e_{u x} / L_{x}+6^{*} e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.258 \mathrm{ksf} \\
& q_{u 3}=F_{u z}^{*}\left(1+6^{*} e_{u x} / L_{x}-6^{*} e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.258 \mathrm{ksf} \\
& q_{u 4}=F_{u z}^{*}\left(1+6^{*} e_{u x} / L_{x}+6^{*} e_{u y} / L_{y}\right) /\left(L_{x}^{*} L_{y}\right)=1.258 \mathrm{ksf} \\
& q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.258 \mathrm{ksf}
\end{aligned}
$$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Maximum ultimate base pressure

$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.258 \mathrm{ksf}$

Moment diagram, x axis (kip_ft)
1.6

Moment design, \mathbf{x} direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, x direction

Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)
Design shear capacity
$S_{\max }=\min \left(2^{*} h, 18\right.$ in $)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Mu.x.max = 1.577 kip_ft
4 No. 5 bottom bars ($9.7 \mathrm{in} \mathrm{c/c)}$
Asx.bot.prov $=1.24$ in 2
As.min $=0.0018$ * Ly * $\mathrm{h}=0.907 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}-\phi \mathrm{x}$.bot $/ 2=10.688$ in
$\mathrm{a}=$ Asx.bot.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85^{*} \mathrm{f}^{\prime} \mathrm{c}{ }^{*} \mathrm{~L}_{\mathrm{y}}\right)=\mathbf{0 . 6 0 8}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.715 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * $\mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 4 1 8 4}$
$\varepsilon_{\text {min }}=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}=$ Asx.bot.prov $^{*} \mathrm{fy}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=\mathbf{6 4 . 3 7 8} \mathrm{kip} \mathrm{ft}$
$\phi f=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) /(0.005-\varepsilon t y), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}^{*} \mathrm{Mn}_{\mathrm{n}}=57.94 \mathrm{kip} \mathrm{ft}$
Mu.x.max / $\phi \mathrm{Mn}_{\mathrm{n}}=0.027$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . x}=0.831$ kips
$\mathrm{d} v=\mathrm{h}-\mathrm{Cnom}-\phi$ x.bot/2 $2=10.688 \mathrm{in}$
$\phi v=0.75$
$V_{n}=2 * \lambda * \sqrt{ }\left(f^{\prime} c * 1 p s i\right) * L_{y}^{*} d v=48.667$ kips
$\phi V_{n}=\phi v{ }^{*} V_{n}=36.501$ kips

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

$$
V_{u . x} / \phi V_{n}=0.023
$$

PASS - Design shear capacity exceeds ultimate shear load

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
way shear design, y direction
Ultimate shear force
Depth to reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Mu.y.max $=1.577$ kip_ft
4 No. 5 bottom bars ($9.7 \mathrm{in} \mathrm{c/c)}$
Asy.bot.prov $=1.24 \mathrm{in}^{2}$
As.min $=0.0018$ * $\mathrm{L}_{\mathrm{x}}{ }^{*} \mathrm{~h}=0.907 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$S_{\max }=\min \left(2^{*} \mathrm{~h}, 18 \mathrm{in}\right)=18 \mathrm{in}$
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}-\phi x$. bot $-\phi y$ bot $/ 2=10.063$ in
$\mathrm{a}=\mathrm{A}_{\text {sy.bot.prov }}{ }^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right.$ * Lx$)=\mathbf{0 . 6 0 8}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.715 \mathrm{in}$
$\varepsilon \mathrm{t}=0.003$ * d / c-0.003 $=\mathbf{0 . 0 3 9 2 1}$
$\varepsilon_{\text {min }}=0.004=0.00400$
PASS - Tensile strain exceeds minimum required
$\mathrm{Mn}=\mathrm{A}_{\text {sy.bot.prov }}{ }^{*} \mathrm{fy}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=60.503 \mathrm{kip} \mathrm{ft}$
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon \mathrm{ty}) /(0.005-\varepsilon \mathrm{ty}), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f}{ }^{*} \mathrm{Mn}_{\mathrm{n}}=54.453 \mathrm{kip} \mathrm{ft}$
Mu.y.max $/ \phi \mathrm{Mn}_{\mathrm{n}}=0.029$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . y}=0.831$ kips
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}-\phi \mathrm{x}$.bot $-\phi$. y bot $/ 2=10.063$ in
$\phi v=0.75$
$V_{n}=2{ }^{*} \lambda * \sqrt{ }\left(f^{\prime} c{ }^{*} 1 \mathrm{psi}\right) * L_{x}{ }^{*} d v=45.821 \mathrm{kips}$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.6	
	Calc. by BJW	$\begin{array}{\|l\|} \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Design shear capacity

$$
\begin{aligned}
& \phi V_{n}=\phi v * V_{n}=34.366 \text { kips } \\
& V_{u . y} / \phi V_{n}=0.024
\end{aligned}
$$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
Ultimate bearing pressure at center of shear area
Ultimate shear load

Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$\mathrm{d}_{\mathrm{v} 2}=10.375 \mathrm{in}$
$\mathrm{I}_{\mathrm{xp}}=16.375 \mathrm{in}$
lyp $=16.375$ in
$b_{o}=2$ * $\left(l_{x 1}+d_{v 2}\right)+2^{*}\left(l_{y} 1+d_{v 2}\right)=65.500$ in
$A_{p}=\left.\left.\right|_{x, \text { perim }}{ }^{*}\right|_{y, \text { perim }}=268.141 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-\left.I_{x 1}{ }^{*}\right|_{y 1}=232.141 \mathrm{in}^{2}$
qup.avg $=1.258 \mathrm{ksf}$

qup.avg * $A_{p}=4.703$ kips
vug $=\max \left(\mathrm{Fup}_{\mathrm{up}} /\left(\mathrm{bo}_{\mathrm{o}}{ }^{*} \mathrm{dv2}\right), 0 \mathrm{psi}\right)=6.921 \mathrm{psi}$
$\beta=l_{y 1} / I_{x 1}=1.00$
$\alpha_{s}=40$
$\left.V_{\text {cpa }}=(2+4 / \beta) \lambda^{*} V_{\left(f f^{\prime}\right.}{ }^{*} 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}}{ }^{*} \mathrm{dv}_{\mathrm{v} 2} / \mathrm{b}+2\right)^{*} \lambda^{*} \sqrt{ }\left(\mathrm{f}_{\mathrm{c}}\right.$ * 1 psi$)=527.207 \mathrm{psi}$
$V_{\mathrm{cpc}}=4^{*} \lambda^{*} \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c}{ }^{*} 1 \mathrm{psi}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{V}_{\mathrm{cpa}}, \mathrm{V}_{\mathrm{cpb}}, \mathrm{V}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi v=0.75$
$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi V_{n}=\phi v{ }^{*} V_{n}=189.737 \mathrm{psi}$
$\mathrm{Vug}_{\mathrm{g}} / \phi \mathrm{V}_{\mathrm{n}}=0.036$
PASS - Design shear stress capacity exceeds ultimate shear stress load

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section C1 Pad Footing (F5)				Sheet no./rev.7	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 25 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with International Building Code 2018

Retaining wall details

Stem type
Stem height
Stem thickness
Angle to rear face of stem
Stem density
Toe length
Heel length
Base thickness
Base density
Height of retained soil
Angle of soil surface
Depth of cover
Cantilever
$\mathrm{h}_{\text {stem }}=9.6 \mathrm{ft}$
tstem $=\mathbf{1 0}$ in
$\alpha=90 \mathrm{deg}$
$\gamma_{\text {stem }}=150 \mathrm{pcf}$
ltoe $=\mathbf{1} \mathrm{ft}$
Iheel $=4.667 \mathrm{ft}$
tbase $=12$ in
γ base $=150 \mathrm{pcf}$
$h_{\text {ret }}=8.89 \mathrm{ft}$
$\beta=0 \mathrm{deg}$
dcover $=0.5 \mathrm{ft}$
Retained soil properties
Soil type
Moist density
Saturated density
Prescribed active lateral soil pressure
Medium dense well graded sand
$\gamma_{\mathrm{mr}}=\mathbf{1 3 5} \mathrm{pcf}$
$\gamma_{\mathrm{sr}}=145 \mathrm{pcf}$
$\mathrm{pAr}=35 \mathrm{psf} / \mathrm{ft}$
Base soil properties
Soil type
Medium dense well graded sand
Soil density
Prescribed passive lateral soil pressure
Allowable bearing pressure
$\gamma_{\mathrm{b}}=125 \mathrm{pcf}$
pob $=225 \mathrm{psf} / \mathrm{ft}$
Pbearing $=\mathbf{2 5 0 0}$ psf

Loading details

Live surcharge load
Vertical line load at 1.417 ft
Surchargel = 50 psf
PD1 $=485$ plf
$P_{\mathrm{L} 1}=\mathbf{6 4 6}$ plf

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/17/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Calculate retaining wall geometry

Base length
Moist soil height
Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Area of moist soil

- Distance to vertical component
- Distance to horizontal component

Area of base soil

- Distance to vertical component
- Distance to horizontal component

Area of excavated base soil

- Distance to vertical component
- Distance to horizontal component
lbase $=$ Itoe + tstem $+I_{\text {heel }}=6.5 \mathrm{ft}$
$\mathrm{h}_{\text {moist }}=\mathrm{h}_{\text {soil }}=9.39 \mathrm{ft}$
$l_{\text {sur }}=I_{\text {heel }}=4.667 \mathrm{ft}$
$X_{\text {sur_v }}=l_{\text {base }}-I_{\text {heel }} / 2=4.167 \mathrm{ft}$
$h_{\text {eff }}=h_{\text {base }}+d_{\text {cover }}+h_{\text {ret }}=10.39 \mathrm{ft}$
$X_{\text {sur_h }}=h_{\text {eff }} / 2=5.195 \mathrm{ft}$
$\mathrm{A}_{\text {stem }}=\mathrm{h}_{\text {stem }}{ }^{*}$ tstem $=8 \mathrm{ft}^{2}$
$X_{\text {stem }}=$ Itoe + tstem $/ 2=1.417 \mathrm{ft}$
Abase $=l_{\text {base }}{ }^{*}$ tbase $=6.5 \mathrm{ft}^{2}$
Xbase $=$ lbase $/ 2=3.25 \mathrm{ft}$
Amoist $=h_{\text {moist }}{ }^{*} I_{\text {heel }}=43.82 \mathrm{ft}^{2}$
Xmoist_v $=$ lbase $-\left(h_{\text {moist }}{ }^{*}\right.$ lheel $\left.^{2} / 2\right) / A_{\text {moist }}=4.167 \mathrm{ft}$
$\mathrm{Xmoist}^{\mathrm{h}} \mathrm{h}=$ heff $/ 3=3.463 \mathrm{ft}$
Apass $=\mathrm{dcover}^{*}{ }^{*}$ toe $=0.5 \mathrm{ft}^{2}$
$X_{\text {pass_v }}=$ lbase $-\left(\right.$ dcover $^{*} I_{\text {toe }}{ }^{*}\left(\right.$ lbase $\left.\left.-I_{\text {toe }} / 2\right)\right) /$ Apass $=\mathbf{0 . 5} \mathrm{ft}$
Xpass_h $=\left(\mathrm{d}_{\text {cover }}+\mathrm{hbase}\right) / 3=0.5 \mathrm{ft}$
Aexc $=$ hpass * Itoe $=0.5 \mathrm{ft}^{2}$
$X_{\text {exc_v }}=l_{\text {base }}-\left(\right.$ hpass $^{*} I_{\text {toe }}$ * (lbase $\left.\left.-I_{\text {toe }} / 2\right)\right) / A_{\text {exc }}=\mathbf{0 . 5} \mathrm{ft}$
Xexc_h $=\left(h_{\text {pass }}+h_{\text {base }}\right) / 3=0.5 \mathrm{ft}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev.3	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & \text { 2/17/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Soil coefficients

Coefficient of friction to back of wall
Coefficient of friction to front of wall
Coefficient of friction beneath base
From IBC 2018 cl.1807.2.3 Safety factor
Load combination 1

Sliding check

Vertical forces on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Horizontal forces on wall
Surcharge load
Moist retained soil
Total

Check stability against sliding

Base soil resistance
Base friction
Resistance to sliding
Factor of safety

Overturning check

Vertical forces on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Horizontal forces on wall
Surcharge load
Moist retained soil
Base soil
Total

Overturning moments on wall

Surcharge load
Moist retained soil
Total
$\mathrm{K}_{\mathrm{fr}}=\mathbf{0 . 3 0 0}$
$\mathrm{K}_{\mathrm{fb}}=\mathbf{0 . 3 0 0}$
$\mathrm{K}_{\mathrm{fbb}}=\mathbf{0 . 3 5 0}$
ALSO CHECK 0.7EQ W/ F.O.S. = 1.1 FOR OVERTURNING \& SLIDING
1.0 * Dead + 1.0 * Live + 1.0 * Lateral earth
$\mathrm{F}_{\text {stem }}=\mathrm{A}_{\text {stem }}{ }^{*} \gamma_{\text {stem }}=\mathbf{1 2 0 0}$ plf
$F_{\text {base }}=$ Abase ${ }^{*} \gamma$ base $=975$ plf
$F_{P-v}=P_{D 1}+0$ * $P_{L 1}=485$ plf
$F_{\text {moist_v }}=$ Amoist $^{*} \gamma_{\mathrm{mr}}=\mathbf{5 9 1 6}$ plf
Fexc_v = Aexc ${ }^{*} \gamma \mathrm{~b}=63$ plf
$F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+$ Fp_v $+F_{\text {moist_v }}+F_{\text {exc_v }}=\mathbf{8 6 3 8}$ plf
Feq_h $=0.7$ * 7 H * heff $=488.7456$ plf
$F_{\text {sur_h }}=$ par $/ \gamma_{\mathrm{mr}}{ }^{*}$ Surcharge ${ }^{*}$ heff $=135$ plf
Fmoist_h $=$ PAr ${ }^{*}$ heff $^{2} / 2=1889$ plf
Ftotal_h $=$ Fsur_h + Fmoist_h $=\mathbf{2 0 2 4}$ plf + Feq_h $^{2} \mathbf{2 5 1 3}$ plf

```
\(F_{\text {exc_h }}=\) pob \(^{*}\left(h_{\text {pass }}+\text { hbase }\right)^{2} / 2=253\) plf
\(F_{\text {friction }}=F_{\text {total_v }}{ }^{*} K_{\text {ffbb }}=3023\) plf
\(F_{\text {rest }}=F_{\text {exc_h }}+\) Ffriction \(=\mathbf{3 2 7 7}\) plf \(\quad\) CHECK WITH EQ
FoSsl \(=\) Frest \(/ F_{\text {total_h }}=\mathbf{1 . 6 1 9}>1.5 \quad 3277\) plf \(/ 2513\) plf \(=1.3>1.1\) OK
```

PASS - Factor of safety against sliding is adequate

$$
\begin{aligned}
& F_{\text {stem }}=A_{\text {stem }}{ }^{*} \gamma_{\text {stem }}=1200 \text { plf } \\
& F_{\text {base }}=A_{\text {base }}{ }^{*} \gamma_{\text {base }}=975 \text { plf } \\
& F_{P_{_} _}=P_{D 1}+0^{*} P_{L 1}=485 \text { plf } \\
& F_{\text {moist } _v}=A_{\text {moist }}{ }^{*} \gamma_{\mathrm{mr}}=5916 \text { plf } \\
& F_{\text {exc } _v}=A_{\text {exc }}{ }^{*} \gamma_{\mathrm{b}}=63 \text { plf } \\
& F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{P _v}+F_{\text {moistıv }}+F_{\text {exc_v }}=8638 \text { plf }
\end{aligned}
$$

Fsur_h $=$ PAr $/ \gamma_{\mathrm{mr}}{ }^{*}$ SurchargeL * heff $=135$ plf
Fmoist_h $=$ PAr ${ }^{*}$ heff $^{2} / 2=1889$ plf
Fexch $=-$ pob $^{*}\left(h_{\text {pass }}+h_{\text {base }}\right)^{2} / 2=-253$ plf
$F_{\text {total_h }}=F_{\text {sur_h }}+$ Fmoist_h $+\mathrm{Fexc}_{\text {_h }}=1771$ plf
Meq_OT = Feq_h * heff/2 = $2539 \mathrm{lb} _\mathrm{ft} / \mathrm{tt}$
Msur_OT = Fsur_h * Xsur_h $^{2} \mathbf{7 0 0} \mathbf{l b}$ _ft/ft
$\mathrm{Mmoist}^{\text {OT }}=$ Fmoist_h * Xmoist_h $=\mathbf{6 5 4 3 \mathrm { lb } _ \mathrm { ft } / \mathrm { ft }}$
Mtotal_OT $=$ Msur_OT + Mmoist_OT $=\mathbf{7 2 4 2 ~ l b _ f t / f t ~}+$ Meq_OT $=9781 \mathrm{lb} _f t / f t$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev. 4	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Restoring moments on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Check stability against overturning
Factor of safety

$$
\begin{aligned}
& M_{\text {stem_R }}=F_{\text {stem }}{ }^{*} \text { Xstem }=\mathbf{1 7 0 0} \mathrm{lb} _\mathrm{ft} / \mathrm{ft} \\
& M_{\text {base_R }}=\text { Fbase }^{*} \text { Xbase }=\mathbf{3 1 6 9 ~ l b _ f t / f t ~} \\
& M_{P _R}=\left(a b s\left(P_{D 1}+0 \text { * } P_{L 1}\right)\right){ }^{*} p_{1}=687 \mathrm{lb} _f t / f t \\
& M_{m o i s t _R}=F_{\text {moist_v }} \text { * } \text { Xmoist_v } \mathbf{2 4 6 4 9 ~ l b _ f t / f t ~} \\
& \text { Mexc_R }=\text { Fexc_v }^{*} \text { Xexc_v } \text { F Fexc_h * } \text { Xexc_h }=158 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

CHECK WITH EQ:
FoSot = Mtotal_R / Mtotal_ot = 4.192 > $1.530363 \mathrm{lb} _\mathrm{ft} / \mathrm{ft} / 9781 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}=3.1$ > 1.1 OK PASS - Factor of safety against overturning is adequate

Bearing pressure check

Vertical forces on wall

Wall stem
Wall base
Surcharge load
Line loads
Moist retained soil
Base soil
Total

Horizontal forces on wall

Surcharge load
Moist retained soil
Base soil
Total

Moments on wall

Wall stem
Wall base
Surcharge load
Line loads
Moist retained soil
Base soil
Total
Check bearing pressure
Distance to reaction
Eccentricity of reaction
Loaded length of base
Bearing pressure at toe
Bearing pressure at heel
Factor of safety

$$
\begin{aligned}
& F_{\text {stem }}=A_{\text {stem }}{ }^{*} \gamma_{\text {stem }}=1200 \text { plf } \\
& \text { Fbase }=\text { Abase }^{*} \gamma_{\text {base }}=975 \text { plf } \\
& \text { Fsur_v = Surcharge }{ }^{*} \text { Ineel = } 233 \text { plf } \\
& F_{P-v}=P_{D 1}+P_{L 1}=1131 \text { plf } \\
& F_{\text {moist_v }}=\text { Amoist }^{*} \gamma_{\mathrm{mr}}=5916 \text { plf } \\
& \text { Fpass_v }=\text { Apass }^{*} \gamma_{b}=63 \text { plf } \\
& F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{\text {sur_v }}+F_{p _v}+F_{\text {moist } _v}+F_{\text {pass } _v}=9518 \text { plf } \\
& \mathrm{Fsur}_{\mathrm{h}} \mathrm{~h}=\mathrm{PAr} / \gamma_{\mathrm{mr}}{ }^{*} \text { SurchargeL * } \text { heff }=135 \text { plf } \\
& \text { Fmoist_h }=\text { PAr }^{*} \text { heff }^{2} / 2=\mathbf{1 8 8 9} \text { plf } \\
& F_{\text {pass_h }}=- \text { pob }^{*}\left(\text { dcover }+ \text { hbase }^{2}\right)^{2} / 2=\mathbf{- 2 5 3} \text { plf } \\
& F_{\text {total_h }}=\max \left(F_{\text {sur_h }}+F_{\text {moist_h }}+F_{\text {pass_h }}-F_{\text {total_v }}{ }^{*} K_{\text {fbb }}, 0 \text { plf }\right)=\mathbf{0} \text { plf }
\end{aligned}
$$

$M_{\text {stem }}=F_{\text {stem }}{ }^{*}$ Xstem $=\mathbf{1 7 0 0} \mathbf{l b} \mathrm{ft} / \mathrm{ft}$
Mbase $=$ Fbase ${ }^{*}$ Xbase $=3169 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M_{\text {sur }}=F_{\text {sur_v }}{ }^{*} X_{\text {sur_v }}-F_{\text {sur_h }}{ }^{*} X_{\text {sur_h }}=273 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M P=\left(\left(P_{D 1}+P_{L 1}\right)\right){ }^{*} p_{1}=1602 \mathrm{lb} _f t / f t$
$M_{\text {moist }}=F_{\text {moist_v }}{ }^{*}$ Xmoist_v $-F_{\text {moist_h }}{ }^{*}$ Xmoist_h $=18106 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M_{\text {pass }}=F_{\text {pass_v }}{ }^{*}$ Xpass_v $-F_{\text {pass_h }}{ }^{*}$ Xpass_h $=158 \mathrm{lb}$ ft/ft
$M_{\text {total }}=M_{\text {stem }}+M_{\text {base }}+M_{\text {sur }}+\mathrm{Mp}_{\mathrm{P}}+\mathrm{Mmoist}^{\text {mpass }}=25008 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\bar{x}=M_{\text {total }} / F_{\text {total } _v}=2.628 \mathrm{ft}$
$\mathrm{e}=\overline{\mathrm{x}}-\mathrm{l}_{\text {base }} / 2=\mathbf{- 0 . 6 2 2 \mathrm { ft }}$
$l_{\text {load }}=l_{\text {base }}=6.5 \mathrm{ft}$
qtoe $=$ Ftotal_v $^{\prime} /$ lbase $^{*}(1-6$ * e / lbase $)=2306 \mathrm{psf}$
qheel $=F_{\text {total_v }} / l_{\text {base }}$ * $(1+6$ * $\mathrm{e} /$ lbase $)=\mathbf{6 2 3} \mathrm{psf}$
$\mathrm{FoSbp}_{\mathrm{bp}}=\mathrm{P}_{\text {bearing }} / \max \left(\right.$ qtoe $^{\text {q }}$ qheel $)=1.084$
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev. 5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

RETAINING WALL DESIGN

In accordance with ACI 318-14

Concrete details

Compressive strength of concrete
$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
Concrete type
Normal weight

Reinforcement details

Yield strength of reinforcement
Modulus of elasticity or reinforcement
Compression-controlled strain limit

Cover to reinforcement

Front face of stem
Csf $=1.5 \mathrm{in}$
Rear face of stem
$\mathrm{Csr}=2$ in
Top face of base
Bottom face of base
$\mathrm{Cbt}=\mathbf{2}$ in
$\mathrm{Cbb}=3$ in

From IBC 2018 cl.1605.2 Basic load combinations

Load combination no. 1
Load combination no. 2
Load combination no. 3
Load combination no. 4
1.4 * Dead
1.2 * Dead + 1.6 * Live + 1.6 * Lateral earth
1.2 * Dead +1.0 * Earthquake +1.0 * Live +1.6 * Lateral earth
0.9 * Dead + 1.0 * Earthquake + 1.6 * Lateral earth
Losding detals-Combination No.1-kipant

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev.6	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 2/17/2021 } \end{array}$	Chk'd by	Date	App'd by	Date

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev. 7	
	Calc. by BJW	$\begin{aligned} & \text { Date } \\ & \text { 2/17/2021 } \end{aligned}$	Chk'd by	Date	App'd by	Date

Losding detals-Combination No.4-sipsint

Check stem design at base of stem

Depth of section
$h=10$ in
Rectangular section in flexure - Section 22.3
Design bending moment combination 2
$\mathrm{M}=8642 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Depth of tension reinforcement
$\mathrm{d}=\mathrm{h}-\mathrm{Csr}-$ фsr $/ 2=7.625$ in
Compression reinforcement provided
Area of compression reinforcement provided
No. 5 bars @ 18" c/c
Asf.prov $=\pi^{*} \phi_{\text {st }}{ }^{2} /\left(4^{*} \mathrm{sst}\right)=0.205 \mathrm{in}^{2} / \mathrm{ft}$
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.11.7.2
No. 6 bars @ 12" c/c
Asr.prov $=\pi^{*} \phi \mathrm{sr}^{2} /\left(4^{*} \mathrm{Ssr}\right)=0.442 \mathrm{in}^{2} / \mathrm{ft}$
$S_{\text {max }}=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18$ in
PASS - Reinforcement is adequately spaced
Depth of compression block
Neutral axis factor - cl.22.2.2.4.3
$\mathrm{a}=\mathrm{A}_{\text {sr.prov }}{ }^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 6 5}$ in
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=0.85$
Depth to neutral axis
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.764 \mathrm{in}$
Strain in reinforcement
$\varepsilon t=0.003 \times(d-c) / c=0.026928$
Section is in the tension controlled zone
Strength reduction factor
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon \mathrm{t}-\varepsilon \mathrm{ty}) / 0.003,0.65\right), 0.9\right)=0.9$
Nominal flexural strength
$\mathrm{Mn}_{\mathrm{n}}=$ Asr.prov $^{*} \mathrm{f}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=16126 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Design flexural strength
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{Mn}_{\mathrm{n}}=14513 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}}=0.595$
PASS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis
Minimum area of reinforcement - cl.9.6.1.2
Asr.des $=0.258 \mathrm{in}^{2} / \mathrm{ft}$
Asr.min $\left.=\max \left(3 * \sqrt{\left(f f_{c}\right.}{ }^{*} 1 \mathrm{psi}\right), 200 \mathrm{psi}\right) * d / \mathrm{f}_{\mathrm{y}}=\mathbf{0 . 3 0 5} \mathrm{in}^{2} / \mathrm{ft}$
PASS - Area of reinforcement provided is greater than minimum area of reinforcement required
Rectangular section in shear - Section 22.5

Design shear force
Concrete modification factor - cl.19.2.4
Nominal concrete shear strength - eqn.22.5.5.1
$\mathrm{V}=2664 \mathrm{lb} / \mathrm{ft}$
$\lambda=1$
$V_{c}=2 \times \lambda \times \sqrt{ }\left(f^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right) \times \mathrm{d}=11574 \mathrm{lb} / \mathrm{ft}$

© Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				Sheet no./rev.8	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Strength reduction factor
Design concrete shear strength - cl.11.5.1.1
$\phi s=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=8680 \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0} .307$

PASS - No shear reinforcement is required

Horizontal reinforcement parallel to face of stem

Minimum area of reinforcement - cl.11.6.1
Transverse reinforcement provided
Area of transverse reinforcement provided

Asx.req $=0.002{ }^{*}$ tstem $=0.24 \mathrm{in}^{2} / \mathrm{ft}$
No. 5 bars @ 18" c/c each face
Asx.prov $=2^{*} \pi^{*} \phi s x^{2} /\left(4^{*} S_{s x}\right)=0.409 \mathrm{in}^{2} / \mathrm{ft}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

Depth of section
$h=12$ in
Rectangular section in flexure - Section 22.3
Design bending moment combination 2
$\mathrm{M}=1437 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Depth of tension reinforcement
$\mathrm{d}=\mathrm{h}-\mathrm{Cbb}-\phi \mathrm{bb} / 2=8.688 \mathrm{in}$
Compression reinforcement provided
No. 5 bars @ 12" c/c
Area of compression reinforcement provided
Abt.prov $=\pi^{*} \phi_{\text {bt }}{ }^{2} /\left(4^{*}\right.$ Sbt) $=0.307 \mathrm{in}^{2} / \mathrm{ft}$
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.7.7.2.3
Abb.prov $=\pi^{*} \phi^{2 b^{2}} /\left(4^{*} \mathrm{Sbb}\right)=0.307 \mathrm{in}^{2} / \mathrm{ft}$
$S_{\max }=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18 \mathrm{in}$
PASS - Reinforcement is adequately spaced
Depth of compression block
$\mathrm{a}=$ Abb.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 4 5 1}$ in
Neutral axis factor - cl.22.2.2.4.3
$\beta 1=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=0.85$
Depth to neutral axis
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.531 \mathrm{in}$
Strain in reinforcement
$\varepsilon t=0.003 \times(d-c) / c=0.046101$
Section is in the tension controlled zone
Strength reduction factor
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon \mathrm{t}-\varepsilon \mathrm{ty}) / 0.003,0.65\right), 0.9\right)=0.9$
Nominal flexural strength
$\mathrm{M}_{\mathrm{n}}=$ Abb.prov * f_{y} * $(\mathrm{d}-\mathrm{a} / 2)=12980 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Design flexural strength
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{Mn}_{\mathrm{n}}=11682 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}} \mathbf{0 . 1 2 3}$
PASS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis
Abb.des $=0.037 \mathrm{in}^{2} / \mathrm{ft}$
Minimum area of reinforcement - cl.7.6.1.1
Abb.min $=0.0018$ * $\mathrm{h}=0.259 \mathrm{in}^{2} / \mathrm{ft}$
PASS - Area of reinforcement provided is greater than minimum area of reinforcement required
Rectangular section in shear - Section 22.5
Design shear force
Concrete modification factor - cl.19.2.4
$\mathrm{V}=2799 \mathrm{lb} / \mathrm{ft}$

Nominal concrete shear strength - eqn.22.5.5.1
λ
$V_{c}=2 \times \lambda \times \sqrt{ }\left(f^{\prime} c \times 1 \mathrm{psi}\right) \times \mathrm{d}=\mathbf{1 3 1 8 7} \mathrm{lb} / \mathrm{ft}$
Strength reduction factor
$\phi s=0.75$
Design concrete shear strength - cl.7.6.3.1
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=9890 \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=0.283$
PASS - No shear reinforcement is required
Check base design at heel
Depth of section
$\mathrm{h}=12 \mathrm{in}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref. 8119	
	Section 10" Cantilever Retaining Wall - Typical				$\begin{aligned} & \text { Sheet no./rev. } \\ & 9 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Rectangular section in flexure - Section 22.3

Design bending moment combination 2
Depth of tension reinforcement
Compression reinforcement provided
Area of compression reinforcement provided
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.7.7.2.3

Depth of compression block
Neutral axis factor - cl.22.2.2.4.3
Depth to neutral axis
Strain in reinforcement

Strength reduction factor
Nominal flexural strength
Design flexural strength

By iteration, reinforcement required by analysis
Minimum area of reinforcement - cl.7.6.1.1
$\mathrm{M}=8013 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{d}=\mathrm{h}-\mathrm{Cbt}-\phi \mathrm{bt} / 2=9.687 \mathrm{in}$
No. 5 bars @ 12" c/c
Abb.prov $=\pi^{*}$ 中b $^{2} /\left(4^{*} \mathrm{Sbb}\right)=0.307 \mathrm{in}^{2} / \mathrm{ft}$
No. 5 bars @ 12" c/c
Abt.prov $=\pi^{*} \phi b{ }^{2} /\left(4^{*}\right.$ Sbt $)=0.307 \mathrm{in}^{2} / \mathrm{ft}$
$S_{\text {max }}=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18$ in
PASS - Reinforcement is adequately spaced
$\mathrm{a}=$ Abt.prov ${ }^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 4 5 1}$ in
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.531 \mathrm{in}$
$\varepsilon t=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 5 1 7 5 3}$
Section is in the tension controlled zone
$\phi t=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon \mathrm{ty}) / 0.003,0.65\right), 0.9\right)=0.9$
$\mathrm{Mn}_{\mathrm{n}}=$ Abt.prov ${ }^{*} \mathrm{fy}_{\mathrm{y}}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)=14514 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=13063 \mathrm{lb} \mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}}=0.613$
PASS - Design flexural strength exceeds factored bending moment
Abt.des $=\mathbf{0 . 1 8 6} \mathrm{in}^{2} / \mathrm{ft}$
Abt.min $=0.0018$ * $\mathrm{h}=0.259 \mathrm{in}^{2} / \mathrm{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Section 22.5

Design shear force
Concrete modification factor - cl.19.2.4
$\mathrm{V}=2291 \mathrm{lb} / \mathrm{ft}$

Nominal concrete shear strength - eqn.22.5.5.1
$\lambda=1$

Strength reduction factor
$V_{c}=2 \times \lambda \times \sqrt{ }\left(f^{\prime} c \times 1 \mathrm{psi}\right) \times d=14705 \mathrm{lb} / \mathrm{ft}$

Design concrete shear strength - cl.7.6.3.1
$\phi s=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=11028 \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0} .208$
PASS - No shear reinforcement is required
Transverse reinforcement parallel to base
Minimum area of reinforcement - cl.7.6.1.1
Abx.req $=0.0018$ * tbase $=0.259 \mathrm{in}^{2} / \mathrm{ft}$
Transverse reinforcement provided
No. 5 bars @ 12" c/c each face
Area of transverse reinforcement provided
Abx.prov $=2^{*} \pi^{*} \phi b x^{2} /\left(4^{*} \mathrm{Sbx}\right)=0.614 \mathrm{in}^{2} / \mathrm{ft}$
PASS - Area of reinforcement provided is greater than area of reinforcement required

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 10" Cantilever Retaining Wall - Typical				$\begin{aligned} & \text { Sheet no./rev. } \\ & 10 \end{aligned}$	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 2 / 17 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev. 1	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with International Building Code 2018

Retaining wall details

Stem type
Stem height
Stem thickness
Angle to rear face of stem
Stem density
Toe length
Heel length
Base thickness
Base density
Height of retained soil
Angle of soil surface
Depth of cover
Cantilever
$\mathrm{h}_{\text {stem }}=9.39 \mathrm{ft}$
tstem $=8$ in
$\alpha=90 \mathrm{deg}$
$\gamma_{\text {stem }}=150 \mathrm{pcf}$
ltoe $=\mathbf{1} \mathrm{ft}$
Iheel $=3.833 \mathrm{ft}$
tbase $=12$ in
γ base $=150 \mathrm{pcf}$
$h_{\text {ret }}=\mathbf{6 f t}$
$\beta=\mathbf{0}$ deg
dcover $=0.5 \mathrm{ft}$
Retained soil properties
Soil type
Moist density
Saturated density
Prescribed active lateral soil pressure
Medium dense well graded sand
$\gamma_{\mathrm{mr}}=\mathbf{1 3 5} \mathrm{pcf}$
$\gamma_{\mathrm{sr}}=145 \mathrm{pcf}$
$\mathrm{pAr}=35 \mathrm{psf} / \mathrm{ft}$
Base soil properties
Soil type
Medium dense well graded sand
Soil density
Prescribed passive lateral soil pressure
Allowable bearing pressure
$\gamma_{\mathrm{b}}=125 \mathrm{pcf}$
$\mathrm{pob}=1 \mathrm{psf} / \mathrm{ft}$
Pbearing $=\mathbf{2 5 0 0}$ psf

Loading details

Live surcharge load
Vertical line load at 1.333 ft
Surchargel = 50 psf
PD1 $=485$ plf
$P_{\mathrm{L} 1}=\mathbf{6 4 6}$ plf

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev.2	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

General arrangement

Calculate retaining wall geometry

Base length
Moist soil height
Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Area of moist soil

- Distance to vertical component
- Distance to horizontal component

Area of base soil

- Distance to vertical component
- Distance to horizontal component

Area of excavated base soil

- Distance to vertical component
- Distance to horizontal component
$I_{\text {base }}=I_{\text {toe }}+\mathrm{t}_{\text {stem }}+I_{\text {heel }}=5.5 \mathrm{ft}$
$\mathrm{h}_{\text {moist }}=\mathrm{h}_{\text {soil }}=6.5 \mathrm{ft}$
$I_{\text {sur }}=l_{\text {heel }}=3.833 \mathrm{ft}$
$X_{\text {sur_v }}=l_{\text {base }}-I_{\text {heel }} / 2=3.583 \mathrm{ft}$
$h_{\text {eff }}=h_{\text {base }}+d_{\text {cover }}+h_{\text {ret }}=7.5 \mathrm{ft}$
$X_{\text {sur_h }}=h_{\text {eff }} / 2=3.75 \mathrm{ft}$
$\mathrm{A}_{\text {stem }}=\mathrm{h}_{\text {stem }}{ }^{*}$ tstem $=6.26 \mathrm{ft}^{2}$
Xstem $=$ Itoe + tstem $/ 2=1.333 \mathrm{ft}$
Abase $=l_{\text {base }}{ }^{*}$ tbase $=5.5 \mathrm{ft}^{2}$
Xbase $=$ lbase $/ 2=2.75 \mathrm{ft}$
Amoist $=h_{\text {moist }}{ }^{*}$ Ineel $=24.916 \mathrm{ft}^{2}$
Xmoist_v $=I_{\text {base }}-\left(h_{\text {moist }} * I_{\text {heel }}{ }^{2} / 2\right) / A_{\text {moist }}=3.583 \mathrm{ft}$
$X_{\text {moist }} \mathrm{h}=$ heff $/ 3=2.5 \mathrm{ft}$
Apass $=\left.\mathrm{d}_{\text {cover }}{ }^{*}\right|_{\text {toe }}=0.5 \mathrm{ft}^{2}$
Xpass_v $=$ lbase $-\left(\right.$ dcover $^{*} I_{\text {toe }}{ }^{*}\left(\right.$ lbase $\left.\left.-I_{\text {toe }} / 2\right)\right) /$ Apass $=\mathbf{0 . 5} \mathrm{ft}$
Xpass_h $=\left(\mathrm{d}_{\text {cover }}+\right.$ hbase $) / 3=0.5 \mathrm{ft}$
Aexc $=h_{\text {pass }}{ }^{*} I_{\text {toe }}=0.5 \mathrm{ft}^{2}$
Xexc_v $=l_{\text {base }}-\left(\right.$ hpass $^{*} I_{\text {toe }}{ }^{*}($ lbase $-I$ toe $\left./ 2)\right) / A_{\text {exc }}=0.5 \mathrm{ft}$
Xexc_h $=\left(h_{\text {pass }}+\right.$ hbase $) / 3=0.5 \mathrm{ft}$

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev.3	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Soil coefficients

Coefficient of friction to back of wall
Coefficient of friction to front of wall
Coefficient of friction beneath base
From IBC 2018 cl.1807.2.3 Safety factor
Load combination 1

Sliding check

Vertical forces on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Horizontal forces on wall
Surcharge load
Moist retained soil
Total

Check stability against sliding

Base soil resistance
Base friction
Resistance to sliding
Factor of safety

Overturning check

Vertical forces on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Horizontal forces on wall
Surcharge load
Moist retained soil
Base soil
Total

Overturning moments on wall

Surcharge load
Moist retained soil
Total
$\mathrm{K}_{\mathrm{fr}}=\mathbf{0 . 3 0 0}$
$\mathrm{K}_{\mathrm{fb}}=\mathbf{0 . 3 0 0}$
$\mathrm{K}_{\mathrm{fbb}}=\mathbf{0 . 3 5 0}$
ALSO CHECK 0.7EQ W/ F.O.S. = 1.1 FOR OVERTURNING \& SLIDING
1.0 * Dead + 1.0 * Live + 1.0 * Lateral earth
$\mathrm{F}_{\text {stem }}=$ Astem $^{*} \gamma_{\text {stem }}=\mathbf{9 3 9}$ plf
$F_{\text {base }}=$ Abase $^{*} \gamma^{\text {base }}=825 \mathrm{plf}$
$F_{P-v}=P_{D 1}+0{ }^{*} \mathrm{P}_{\mathrm{L} 1}=485 \mathrm{plf}$
$F_{\text {moist_v }}=$ Amoist $^{*} \gamma_{\mathrm{mr}}=\mathbf{3 3 6 4}$ plf
Fexc_v = Aexc * $\gamma \mathrm{b}=63 \mathrm{plf}$
$F_{\text {total_v }}=F_{\text {stem }}+$ Fbase $^{\text {b }}$ Fp_v + Fmoist_v $+F_{\text {exc_v }}=\mathbf{5 6 7 5}$ plf
Feq_h $=0.7$ * 7 H * heff $=345.0825$ plf
Fsur_h = par $/ \gamma_{\mathrm{mr}}{ }^{*}$ Surchargel ${ }^{*}$ heff $=97$ plf
$F_{\text {moist } _ \text {h }}=$ PAr * hefti $^{2} / 2=984$ plf
Ftotal_h $=$ Fsur_h + Fmoist_h $=\mathbf{1 0 8 2}$ plf + Feq_h $^{\text {h }} \mathbf{1 4 2 8}$ plf

```
Fexc_h \(=\) pob \(^{*}\left(h_{\text {pass }}+h_{\text {base }}\right)^{2} / 2=1\) plf
\(F_{\text {friction }}=\) Ftotal_v \(^{*} K_{\text {ffb }}=1986\) plf
\(F_{\text {rest }}=F_{\text {exc_h }}+F_{\text {friction }}=1987\) plf
CHECK WITH EQ
FoSsl \(=\) Frest \(/ \mathrm{F}_{\text {total_h }}=\mathbf{1 . 8 3 8} \boldsymbol{> 1 . 5} \quad 1987\) plf \(/ 1428\) plf \(=1.39>1.1\) OK
```

PASS - Factor of safety against sliding is adequate

$$
\begin{aligned}
& F_{\text {stem }}=A_{\text {stem }}{ }^{*} \gamma_{\text {stem }}=939 \text { plf } \\
& F_{\text {base }}=A_{\text {base }}{ }^{*} \gamma_{\text {base }}=825 \text { plf } \\
& F_{P_{_} _}=P_{D 1}+0^{*} P_{L 1}=485 \text { plf } \\
& F_{\text {moist } _v}=A_{\text {moist }}{ }^{*} \gamma_{\mathrm{mr}}=\mathbf{3 3 6 4} \text { plf } \\
& F_{\text {exc } _v}=A_{\text {exc }}{ }^{*} \gamma_{\mathrm{b}}=\mathbf{6 3} \text { plf } \\
& F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{P _v}+F_{\text {moistıv }}+F_{\text {exc_v }}=5675 \text { plf }
\end{aligned}
$$

Fsur_h $=$ PAr $/ \gamma_{\mathrm{mr}}{ }^{*}$ Surchargel ${ }^{*}$ heff $=97$ plf
$F_{\text {moist_h }}=$ PAr $^{*} h_{\text {efti }}{ }^{2} / 2=984$ plf
Fexc_h $=-$ pob $^{*}\left(h_{\text {pass }}+h_{\text {base }}\right)^{2} / 2=-1$ plf
$F_{\text {total_h }}=F_{\text {sur_h }}+$ Fmoist_h $+\mathrm{Fexc}_{\text {_h }}=1080$ plf
Meq_OT = Feq_h * heff/2 = $1295 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Msur_OT = Fsur_h * Xsur_h $^{2}=365 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Mmoist_OT $=$ Fmoist_h * Xmoist_h $=\mathbf{2 4 6 1} \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Mtotal_OT $=$ Msur_OT + Mmoist_OT $=\mathbf{2 8 2 6 ~ l b _ f t / f t ~}+$ Meq_OT $=4121 \mathrm{lb} _f t / f t$

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev. 4	
	Calc. by BJW	$\begin{aligned} & \hline \text { Date } \\ & 3 / 3 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Restoring moments on wall

Wall stem
Wall base
Line loads
Moist retained soil
Base soil
Total
Check stability against overturning
Factor of safety

$$
\begin{aligned}
& M_{\text {stem_R }}=F_{\text {stem }}{ }^{*} \text { Xstem }=1252 \mathrm{lb} _\mathrm{ft} / \mathrm{ft} \\
& M_{\text {base_R }}=\text { Fbase }^{*} \text { Xbase }=\mathbf{2 2 6 9 ~ l b _ f t / f t ~} \\
& M_{P _R}=\left(a b s\left(P_{D 1}+0 \text { * } P_{L 1}\right)\right){ }^{*} p_{1}=647 \mathrm{lb} _f t / f t \\
& \text { Mmoist_R }=F_{\text {moist_ }} \text { * } \text { Xmoist_v }=\mathbf{1 2 0 5 3 ~ l b _ f t / f t ~} \\
& \text { Mexc_R = Fexc_v * Xexc_v - Fexc_h * Xexc_h = } 32 \mathrm{lb} _f t / f t
\end{aligned}
$$

 PASS - Factor of safety against overturning is adequate

Bearing pressure check

Vertical forces on wall

Wall stem
Wall base
Surcharge load
Line loads
Moist retained soil
Base soil
Total

Horizontal forces on wall

Surcharge load
Moist retained soil
Base soil
Total

Moments on wall

Wall stem
Wall base
Surcharge load
Line loads
Moist retained soil
Base soil
Total
Check bearing pressure
Distance to reaction
Eccentricity of reaction
Loaded length of base
Bearing pressure at toe
Bearing pressure at heel
Factor of safety

$$
\begin{aligned}
& F_{\text {stem }}=A_{\text {stem }}{ }^{*} \gamma_{\text {stem }}=939 \text { plf } \\
& \text { Fbase }=\text { Abase }{ }^{*} \gamma_{\text {base }}=\mathbf{8 2 5} \text { plf } \\
& \text { Fsur_v = SurchargeL * Ineel = } 192 \text { plf } \\
& F_{P-v}=P_{D 1}+P_{L 1}=1131 \text { plf } \\
& F_{\text {moist_v }}=\text { Amoist }^{*} \gamma_{\mathrm{mr}}=3364 \text { plf } \\
& \text { Fpass_v }=\text { Apass }^{*} \gamma_{b}=63 \text { plf } \\
& F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{\text {sur_v }}+F_{p _v}+F_{\text {moist } _v}+F_{\text {pass } _v}=6513 \text { plf } \\
& \text { Fsur_h }=\text { PAr } / \gamma_{\mathrm{mr}}{ }^{*} \text { Surchargel }{ }^{*} \text { heff }=97 \text { plf } \\
& \text { Fmoisth }=\text { PAr }^{*} h_{\text {eft }}{ }^{2} / 2=984 \text { plf } \\
& F_{\text {pass_h }}=- \text { pob }^{*}\left(\text { dcover }+ \text { hbase }^{2}\right)^{2} / 2=-1 \text { plf } \\
& F_{\text {total_h }}=\max \left(F_{\text {sur_h }}+F_{\text {moist_h }}+F_{\text {pass_h }}-F_{\text {total_v }} * K_{\text {fbb }}, 0 \text { plf }\right)=\mathbf{0} \text { plf }
\end{aligned}
$$

$M_{\text {stem }}=F_{\text {stem }}{ }^{*}$ Xstem $=1252 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Mbase $=$ Fbase * Xbase $=2269 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M_{\text {sur }}=F_{\text {sur_v }}{ }^{*} X_{\text {sur_v }}-F_{\text {sur_h }}{ }^{*} X_{\text {sur_h }}=\mathbf{3 2 2} \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M P=\left(\left(P_{D 1}+P_{L 1}\right)\right){ }^{*} p_{1}=1508 \mathrm{lb} _f t / f t$
Mmoist $=$ Fmoistı * * moist_v - moist_h * Xmoist_h $=9592 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M_{\text {pass }}=$ Fpass_v * Xpass_v $-F_{\text {pass_h }}{ }^{*}$ Xpass_h $=32 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$M_{\text {total }}=M_{\text {stem }}+$ Mbase $+M_{\text {sur }}+M_{p}+M_{\text {moist }}+M_{\text {pass }}=14975 \mathrm{lb} _f t / f t$
$\bar{x}=M_{\text {total }} / F_{\text {total } _v}=2.299 \mathrm{ft}$
$\mathrm{e}=\overline{\mathrm{x}}-\mathrm{l}_{\text {base }} / 2=\mathbf{- 0 . 4 5 1 \mathrm { ft }}$
$l_{\text {load }}=l_{\text {base }}=5.5 \mathrm{ft}$
qtoe $=$ Ftotal_v $^{\prime} /$ lbase $^{*}(1-6$ * e / lbase $)=\mathbf{1 7 6 6} \mathrm{psf}$
qheel $=$ Ftotal_v $^{\prime} /$ base * $(1+6$ * e / lbase $)=\mathbf{6 0 2} \mathrm{psf}$
$\mathrm{FoSbp}_{\mathrm{bp}}=\mathrm{P}_{\text {bearing }} / \max ($ qtoe, qheel $)=1.415$
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev. 5	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

RETAINING WALL DESIGN

In accordance with ACI 318-14

Concrete details

Compressive strength of concrete	$\mathrm{f}^{\prime} \mathrm{c}=\mathbf{4 0 0 0} \mathrm{psi}$
Concrete type	Normal weight

Reinforcement details

Yield strength of reinforcement $\quad \mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
Modulus of elasticity or reinforcement
$\mathrm{E}_{\mathrm{s}}=29000000 \mathrm{psi}$
Compression-controlled strain limit
ε ty $=0.002$

Cover to reinforcement

Front face of stem
$\mathrm{Csf}_{\mathrm{sf}}=1.5 \mathrm{in}$
Rear face of stem
$\mathrm{Csr}=2$ in
Top face of base
$\mathrm{Cbt}=\mathbf{2}$ in
Bottom face of base
$\mathrm{Cbb}=3$ in
From IBC 2018 cl.1605.2 Basic load combinations

Load combination no. 1
Load combination no. 2
Load combination no. 3
Load combination no. 4
1.4 * Dead
1.2 * Dead + 1.6 * Live + 1.6 * Lateral earth
1.2 * Dead +1.0 * Earthquake +1.0 * Live +1.6 * Lateral earth
0.9 * Dead + 1.0 * Earthquake +1.6 * Lateral earth

- Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|l} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev. 6	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Cosirg detals - Comalnation No .3 -kbaif

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev. 7	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Check stem design at base of stem

Depth of section
Rectangular section in flexure - Section 22.3

Design bending moment combination 2
Depth of tension reinforcement
Compression reinforcement provided
Area of compression reinforcement provided
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.11.7.2

Depth of compression block
Neutral axis factor - cl.22.2.2.4.3
Depth to neutral axis
Strain in reinforcement

Strength reduction factor
Nominal flexural strength
Design flexural strength

By iteration, reinforcement required by analysis
Minimum area of reinforcement - cl.9.6.1.3
$\mathrm{h}=8 \mathrm{in}$
$\mathrm{M}=3001 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{d}=\mathrm{h}-\mathrm{Csr}-\phi_{\mathrm{sr}} / 2=5.688$ in
No. 4 bars @ 18" c/c
Asf.prov $=\pi^{*} \phi \mathrm{st}^{2} /\left(4^{*} \mathrm{~S}_{\mathrm{st}}\right)=\mathbf{0 . 1 3 1} \mathrm{in}^{2} / \mathrm{ft}$
No. 5 bars @ 8" c/c
Asr.prov $=\pi^{*} \phi$ sr $^{2} /\left(4^{*}\right.$ Ssr $)=0.46 \mathrm{in}^{2} / \mathrm{ft}$
$S_{\text {max }}=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18$ in
PASS - Reinforcement is adequately spaced
$\mathrm{a}=$ Asr.prov $^{*} \mathrm{fy} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 6 7 7}$ in
$\beta 1=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=\mathbf{0 . 8 5}$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.796 \mathrm{in}$
$\varepsilon t=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 1 8 4 3}$
Section is in the tension controlled zone
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon \mathrm{t}-\varepsilon \mathrm{ty}) / 0.003,0.65\right), 0.9\right)=0.9$
$\mathrm{Mn}_{\mathrm{n}}=\mathrm{A}_{\text {sr.prov }}{ }^{*} \mathrm{fy}_{\mathrm{y}}$ * $(\mathrm{d}-\mathrm{a} / 2)=12308 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{Mn}_{\mathrm{n}}=11077 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}}=\mathbf{0 . 2 7 1}$
PASS - Design flexural strength exceeds factored bending moment
$A_{\text {sr.des }}=0.119 \mathrm{in}^{2} / \mathrm{ft}$
Asr.mod $=4$ * Asr.des $/ 3=0.159$ in$^{2} / \mathrm{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Section 22.5

Design shear force
Concrete modification factor - cl.19.2.4
$\mathrm{V}=1318 \mathrm{lb} / \mathrm{ft}$

Nominal concrete shear strength - eqn.22.5.5.1
$\lambda=1$
$\mathrm{V}_{\mathrm{c}}=2 \times \lambda \times \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right) \times \mathrm{d}=\mathbf{8 6 3 3 \mathrm { lb } / \mathrm { ft }}$

STekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 8119 \end{array}$	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev.8	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Strength reduction factor
Design concrete shear strength - cl.11.5.1.1
$\phi s=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=\mathbf{6 4 7 5} \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 2 0 4}$

PASS - No shear reinforcement is required
Horizontal reinforcement parallel to face of stem

Minimum area of reinforcement - cl.11.6.1
Transverse reinforcement provided
Area of transverse reinforcement provided

Asx.req $=0.002$ * tstem $=\mathbf{0 . 1 9 2} \mathrm{in}^{2} / \mathrm{ft}$
No. 5 bars @ 18" c/c each face
Asx.prov $=2^{*} \pi^{*} \phi_{s x}{ }^{2} /\left(4^{*}{ }^{*} s x\right)=0.409 \mathrm{in}^{2} / \mathrm{ft}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

Depth of section
$h=12$ in
Rectangular section in flexure - Section 22.3
Design bending moment combination 2
$\mathrm{M}=1045 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Depth of tension reinforcement
$\mathrm{d}=\mathrm{h}-\mathrm{Cbb}-\phi$ bы $/ 2=8.688$ in
Compression reinforcement provided
No. 5 bars @ 8" c/c
Area of compression reinforcement provided
Abt.prov $=\pi^{*} \phi$ bt $^{2} /\left(4^{*} \mathrm{Sbt}\right)=\mathbf{0 . 4 6} \mathrm{in}^{2} / \mathrm{ft}$
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.7.7.2.3
No. 5 bars @ 8" c/c
Abb.prov $=\pi^{*} \phi \mathrm{bb}^{2} /\left(4^{*} \mathrm{Sbb}\right)=0.46 \mathrm{in}^{2} / \mathrm{ft}$
$S_{\max }=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18$ in
PASS - Reinforcement is adequately spaced
Depth of compression block
$\mathrm{a}=$ Abb.prov $^{*} \mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 6 7 7}$ in
Neutral axis factor - cl.22.2.2.4.3
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=\mathbf{0 . 8 5}$
Depth to neutral axis
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.796$ in
Strain in reinforcement
$\varepsilon \mathrm{t}=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 2 9 7 3 4}$
Section is in the tension controlled zone
Strength reduction factor
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon \mathrm{t}-\varepsilon \mathrm{ty}) / 0.003,0.65\right), 0.9\right)=0.9$
Nominal flexural strength
$\mathrm{M}_{\mathrm{n}}=$ Abb.prov * f_{y} * $(\mathrm{d}-\mathrm{a} / 2)=19211 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
Design flexural strength
$\phi \mathrm{Mn}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=17290 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}}=\mathbf{0 . 0 6 0}$
PASS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis
Abb.des $=0.027 \mathrm{in}^{2} / \mathrm{ft}$
Minimum area of reinforcement - cl.7.6.1.1
Abb.min $=0.0018$ * $\mathrm{h}=0.259 \mathrm{in}^{2} / \mathrm{ft}$
PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Section 22.5

Design shear force
$\mathrm{V}=2031 \mathrm{lb} / \mathrm{ft}$
Concrete modification factor - cl.19.2.4
$\lambda=1$
Nominal concrete shear strength - eqn.22.5.5.1
Strength reduction factor
$V_{c}=2 \times \lambda \times \sqrt{ }\left(f_{c}^{\prime} \times 1 \mathrm{psi}\right) \times d=13187 \mathrm{lb} / \mathrm{ft}$

Design concrete shear strength - cl.7.6.3.1
$\phi s=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=9890 \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 2 0 5}$
PASS - No shear reinforcement is required
Check base design at heel
Depth of section
$h=12$ in

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				$\begin{aligned} & \text { Sheet no./rev. } \\ & 9 \end{aligned}$	
	Calc. by BJW	$\begin{aligned} & \text { Date } \\ & 3 / 3 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Rectangular section in flexure - Section 22.3

Design bending moment combination 2
Depth of tension reinforcement
Compression reinforcement provided
Area of compression reinforcement provided
Tension reinforcement provided
Area of tension reinforcement provided
Maximum reinforcement spacing - cl.7.7.2.3

Depth of compression block
Neutral axis factor - cl.22.2.2.4.3
Depth to neutral axis
Strain in reinforcement

Strength reduction factor
Nominal flexural strength
Design flexural strength

By iteration, reinforcement required by analysis
Minimum area of reinforcement - cl.7.6.1.1
$\mathrm{M}=2624 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\mathrm{d}=\mathrm{h}-\mathrm{Cbt}-\phi \mathrm{t} / 2=9.687 \mathrm{in}$
No. 5 bars @ 8" c/c
Abb.prov $=\pi^{*} \phi$ bb $^{2} /\left(4^{*} \mathrm{Sbb}\right)=0.46 \mathrm{in}^{2} / \mathrm{ft}$
No. 5 bars @ 8" c/c
Abt.prov $=\pi^{*} \phi_{\text {bt }}{ }^{2} /\left(4^{*} \mathrm{Sbt}\right)=\mathbf{0 . 4 6} \mathrm{in}^{2} / \mathrm{ft}$
$S_{\text {max }}=\min \left(18 \mathrm{in}, 3^{*} \mathrm{~h}\right)=18$ in
PASS - Reinforcement is adequately spaced
$\mathrm{a}=$ Abt.prov * $\mathrm{f}_{\mathrm{y}} /\left(0.85{ }^{*} \mathrm{f}^{\prime} \mathrm{c}\right)=\mathbf{0 . 6 7 7}$ in
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-4 \mathrm{ksi}\right) / 1 \mathrm{ksi}, 0.65\right), 0.85\right)=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.796$ in
$\varepsilon_{t}=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 3 3 5 0 2}$
Section is in the tension controlled zone
$\phi \mathrm{f}=\min \left(\max \left(0.65+0.25^{*}(\varepsilon t-\varepsilon t y) / 0.003,0.65\right), 0.9\right)=0.9$
$\mathrm{Mn}_{\mathrm{n}}=$ Abt.prov ${ }^{*} \mathrm{f}_{\mathrm{y}}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)=21512 \mathrm{lb} _\mathrm{ft} / \mathrm{ft}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=19361 \mathrm{lb} \mathrm{ft} / \mathrm{ft}$
$\mathrm{M} / \phi \mathrm{Mn}_{\mathrm{n}}=\mathbf{0 . 1 3 6}$
PASS - Design flexural strength exceeds factored bending moment
Abt.des $=0.06 \mathrm{in}^{2} / \mathrm{ft}$
Abt.min $=0.0018{ }^{*} \mathrm{~h}=0.259 \mathrm{in}^{2} / \mathrm{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Section 22.5

Design shear force
Concrete modification factor - cl.19.2.4
$\mathrm{V}=927 \mathrm{lb} / \mathrm{ft}$

Nominal concrete shear strength - eqn.22.5.5.1
$\lambda=1$

Strength reduction factor
$V_{c}=2 \times \lambda \times \sqrt{ }\left(f^{\prime} c \times 1 \mathrm{psi}\right) \times d=14705 \mathrm{lb} / \mathrm{ft}$

Design concrete shear strength - cl.7.6.3.1
$\phi s=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi \mathrm{s} \times \mathrm{V}_{\mathrm{c}}=11028 \mathrm{lb} / \mathrm{ft}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 0 8 4}$
PASS - No shear reinforcement is required
Transverse reinforcement parallel to base
Minimum area of reinforcement - cl.7.6.1.1
Abx.req $=0.0018$ * tbase $=0.259 \mathrm{in}^{2} / \mathrm{ft}$
Transverse reinforcement provided
No. 5 bars @ 12" c/c each face
Area of transverse reinforcement provided
Abx.prov $=2^{*} \pi^{*} \phi b x^{2} /\left(4^{*} \mathrm{Sbx}\right)=0.614 \mathrm{in}^{2} / \mathrm{ft}$
PASS - Area of reinforcement provided is greater than area of reinforcement required

Tekla.Tedds Fast + Epp 323 Dean Street, Suite \#3 Brooklyn, NY 11217	Project Yaroslavsky Residence				Job Ref.8119	
	Section 8" Cantilever Retaining Wall - 6 ft Soil				Sheet no./rev.10	
	Calc. by BJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 3 / 3 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Reinforcement details

